

INTRODUCTION

Background: Transformers are the SOTA models for image classification and other computer vision tasks. Their $O(N^2)$ computational complexity makes it hard to work with long sequences/high resolution images. Therefore, a wide variety of architectural modifications have been proposed to make transformers more efficient.

Question: Which transformer variant is the most efficient one and under what circumstances?

Problem: There is a wide diversity of training and evaluation conditions, so papers are not comparable on a fair basis.

Solution: We conduct a comprehensive large-scale analysis of the efficiency of 45+ transformer-like models for image classification on ImageNet. We train every model from scratch. We compare model efficiency using the Pareto front.

Authors: Tobias Nauen (tobias_christian.nauen@dfki.de) (RPTU, DFKI), Sebastian Palacio (ABB), Federico Raue (DFKI), Andreas Dengel (DFKI, RPTU).

Which Transformer to Favor? A Comparative Analysis of Efficiency in Vision Transformers

The baseline ViT model is still Pareto optimal for image classification.

Larger models are more efficient than higher resolution images.

OBSERVATIONS

- TokenLearner, ToMe.

• Using high-resolution (384² px) images is not Pareto optimal (dashed vs. dotted lines). • ViT is pareto optimal at all sizes for 3 out of 4 metrics.

• Token sequence reduction models offer a good tradeoff in speed vs. accuracy; especially

RPTU: University of Kaiserslautern-Landau, Kaiserslautern DFKI: German Research Center for Artificial Intelligence, Kaiserslautern ABB: ABB Germany, Mannheim