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1 Introduction
In this thesis, we consider a stochastic control problem of the form

dYt = µtb(Yt)dt+ σ(Yt)dBt, (1)

where µt is an Ft = σ(Bs|s ≤ t)-measurable, continuous process we have some control over. An
SDE of this form can be found when one considers a noisy process, where only some control
on the drift, i.e. the average direction is given. This control manifests itself in the function
µt : [0, T ]→ R.
A toy example for a problem of this kind could be modeling navigating on the seas or in
space, where the random part is the combined influence of winds and currents on a boat and
µt represents the direction of the rudder, or in the space example, the randomness represents
course altering events like solar winds and µt is the direction or strength of thrust. A similar
optimal control problem with control in the drift was considered in [DFG17], which investigates
the value function to find a dual problem. This was the first paper on stochastic optimal control,
using rough path analysis.
We now use the ansatz

µt = Θ(B|[0,t]) Θ ∈ C(ΛT ,R) =: T ,

with ΛT being the space of stopped rough paths up to time T (see Definition 5.2).
This gives the SDE

dY µ
t = Θ(B̂|[0,t])︸ ︷︷ ︸

=µt

b(Y µ
t )dt+ σ(Y µ

t )dBt. (2)

We can now define a loss-function like

L(Y µ) := E(Y µ
T )2 + E(

∣∣Y µ
T

∣∣2),
but in general all losses L : C([0, T ],Rm)→ R+ Lipschitz or Hölder continuous are possible.
The question we want to answer is: What is infµ E[L(Y µ)] and what does the corresponding
µ (and Θ) look like? It is the question of an optimal way to act, while counteracting random
noise.
First, we need to understand our main problem in Equation (1). This is a shorthand notation
for

Yt − Y0 =
∫ t

0
µτ b(Yτ )dτ +

∫ t

0
σ(Yτ )dBτ . (3)

The second integral in Equation (3) can be seen as an Itô integral. However, we will view it
as the integral over a rough path, a so-called rough integral. This is a generalization of the
Itô-Map, which can also incorporate other types of stochastic integrals, like the Stratonovich-
Integral. This change of perspective is useful since we want to look at the so-called signatures
of some processes, which are defined naturally in the context of rough paths.
The theory of rough paths was first introduced in the 1990s by Terry Lyons [Lyo98]. It is an
elegant framework for path-wise integration with rough driving signals and is therefore suited to
a general class of stochastic processes, like Brownian motion or fractional Brownian motion. In
particular rough integrals are a generalization of Young’s theory of integration. An important
aspect of the theory is the continuity of the solution map of rough differential equations, which
is not given in the classical case of Itô SDEs, where the solution map is measurable, but not
continuous.
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In addition to theoretical advances in SDEs, there were additional tools developed for rough
paths, most notably the signature. The signature X<∞ of a path x : [0, T ]→ Rn is a collection
of iterated integrals of all components of the path against each other;∫

0≤t1≤...≤tk≤t
dxi1t1 ...dx

ik
tk

for k ∈ N and i1, ..., ik ∈ {1, ..., n}. Now, the values of the signature have to be defined up to a
certain level k, which depends on the roughness of the underlying path. To see why this is true,
one can consider the differences between the Itô and Stratonovich integrals, which both are fair
definitions of integrals with respect to Brownian motion. We have∫

0≤t1≤t2≤T
dBt1dBt2 =

∫ T

0
BtdBt =

B2
T

2
+
T

2
,

but also ∫
0≤t1≤t2≤T

◦dBt1 ◦ dBt2 =

∫ T

0
Bt ◦ dBt =

B2
T

2
,

which makes it clear, that there is not one single way of defining the signature of a process.
This is why, when working with iterated integrals, one has to set one way of calculation. The
theory of rough paths gives a framework for doing exactly that. The signature of a path is
important because the signature at time t determines the whole path up to time t up to so-
called tree-like extensions. In particular the signature of an augmented rough path, i.e. a path
xt = (x

(1)
t , ..., x

(n)
t ) with an additional dimension that represents the time

x̂t = (x
(1)
t , ..., x

(n)
t , t) ∈ Rn+1

is unique. This makes the signature an important tool in machine learning as a model-free way
to extract features from time-series data, like audio, speech, or character drawing. As such it
has been used successfully in several machine learning applications [CK16] including Chinese
character recognition [Gra13] or even medical tasks like the recognition of mental disorders
[Arr+18].
The property of injectiveness of the signature map also makes it important to us and is why we
take the following ansatz for answering the question from above:

Θ(B̂|[0,t]) = 〈`, B̂<∞
0,t 〉.

Here, B̂<∞
0,t is the signature of the augmented path of Brownian motion. In this, we will follow

the reasoning of [KLA20] and [Bay+22], where it was shown that similar control problems of
optimal trading speed and optimal stopping can be solved by just using linear maps of the path
signature.
The main result of this thesis will be

Theorem 5.6:
Let 2 ≤ p < 3 and let P be a probability measure on

(
Ω̂p
T ,B(Ω̂

p
T )
)

. Let Y µ be the unique solution
to

dY = µtb(Yt)dt+ σ(Yt)dx

started at ξ ∈ Rm, with µ ∈ T , b Lipschitz, and σ ∈ C3
b (Rm,Rm×n). Here, the x is a random

geometric p-rough path with distribution determined by P. It holds

inf
µ∈T

E[L(Y µ)] = inf
µ∈Tsig

E[L(Y µ)]

for a loss function L : C([0, T ],Rm)→ R bounded and α-Hölder for some α > 0.
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Here T = C(ΛT ,R) is the set of all continuous functions of the path up to some time t ∈ [0, T ],
while Tsig is the set of all functions of the form 〈`, X̂<∞

0,t 〉. The theorem, therefore, says, that
the optimal control problem can be solved by considering just linear maps of the signature of
the augmented path. The statement will then also be extended to Itô integrals, as considered
in Equation (3), in Theorem 5.8.
Using these theorems, we can tackle our question numerically by modeling µt = 〈`, B̂≤k

0,t 〉 to be
a linear map. Here, we drop from the infinite-dimensional, full signature B̂<∞

0,t to the finite-
dimensional, truncated signature B̂≤k

0,t for numerical reasons. This is a good approximation,
as ∥∥∥B̂k

s,t

∥∥∥ ≤ Cω(s, t) k
p(

k
p

)
!

(see [LCL07, Theorem 3.7]), i.e. the norms of additional signature levels decrease like 1
k! . We

can approximate the RDE’s solution by using a Milstein scheme (Algorithm 3) on a discrete
time-grid

0 = t0 < t1 < ... < tk = T

and estimating the expected loss E[L(θ)] after many such simulations. Using the backpropaga-
tion algorithm then can lead us arbitrarily close to the optimal solution µt.
At first, we will introduce the theory of rough paths with its basic facts and definitions and
derive rough integrals as a limit of Riemann-like sums in Section 2. Throughout the thesis, we
will work with general rough paths with finite p-variation for p ∈ [2, 3), where Young integration
breaks down. For ease of notation, we will introduce a tensor calculus. In this section, a general
setting of controlled rough paths is also established that deals with all kinds of rough paths as
opposed to the theory of [FH20] only considering α-Hölder paths. After that, in Section 3, we
will deal with rough differential equations (RDEs). We will prove the existence and uniqueness
of solutions in the usual way via Picard iteration, but then extend the theory to RDEs with
drift term, where we will only require very mild assumptions on the drift term, such that we
can incorporate all RDEs of the form seen in Equation (1) for b Lipschitz and µ continuous. We
also investigate the stability of RDEs in the drift term. After having introduced RDEs , we will
move on to signatures in Section 4, where we will see the basic definitions, along with a proof of
the shuffle identity for geometric rough paths. This is directly followed by the proof of our main
theorem, Theorem 5.6, in Section 5. Here, we will exploit the notion of stopped rough paths, as
well as Lemma 5.5 which has also been used in [KLA20] and [Bay+22] to show the density of
signature controls on compact sets of arbitrary high probability (< 1). We then expand the main
theorem to work with Itô-integrals. After proving the theoretical results, we will go on to state
numerical algorithms which can be used for approximation and which are also implemented and
can be viewed on GitHub1, as well as some convergence results for said algorithms in Section 6.
Then, in Section 7, we test our implementation against a julia reference implementation [RN17]
based on two SDE problems. We also use our framework to solve an optimal asset allocation
problem in the Black-Scholes model. The SDE of this problem is of a different structure than
we had before and we argue why the same approach we took (approximating µ ∈ T by µ ∈ Tsig)
can also be done when one has combined control over the drift and volatility terms. Here, we
use the Markov property of Brownian motion and neural networks to choose the control term to
be C(Rm+1,R) instead of a linear function of the signature of the process. In the end (Section 8)
we will discuss some extensions of the problem, as well as different possibilities of defining the
Gubinelli derivative of RDE solutions when dealing with a drift term.

1https://github.com/tobna/DeepRoughPaths
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2 Rough Paths & Rough Integrals
The theory of rough paths deals with paths

x : [0, T ]→ Rn.

An important set of features is the finiteness of semi-norms of p-variation for p > 0, which
measure the smoothness of such a path. Now the finding is, that depending on their finiteness
one needs additional pieces of information to define certain integrals with respect to the path.
The theory of rough paths is well suited to stochastic processes because their sample paths are
oftentimes too rough to work with other types of integrals (Young integrals). In this thesis, we
will always deal with the fixed time horizon [0, T ] for some T > 0. This section is based on
[Lej03] and [FH20], taking the general approach of [Lej03] and combining it with some of the
results and definitions of [FH20], which only deals with α-Hölder rough paths.

2.1 p-variation

To classify the roughness of paths, we introduce the semi-norm of p-variation.

Definition 2.1 (p-variation):
Let x : [0, T ]→ Rn be a path. The p-variation of x on [s, t] ⊂ [0, T ] is defined by

Varp,[s,t](x) := Varp,[s,t]((t1 ≤ t2) 7→ xt2 − xt1) := sup
{s≤t0<...<tk≤t}

 k∑
j=1

∣∣xtj − xtj−1

∣∣p 1
p

.

We further define

Varp(x) := Varp,[0,T ](x).

First of all, we show some basic properties of the p-variation. The following lemma is a set of
statements taken from [Lej03, Section 2.2].

Lemma 2.2:
Let q > p ≥ 1, 0 ≤ s < t ≤ 1, and x : [0, 1]→ Rn. Then Varp(·) is a semi-norm on the space of
continuous Rn-valued paths, and

Varp,[s,t](x) ≥ Varq,[s,t](x).

Proof. Essentially all these statements come from the corresponding statements on p-norms
‖·‖p of Rn. First, we quickly show that the p-variation is a semi-norm. For this, let λ ∈ R, and
x, y : [0, T ]→ Rn. We have

Varp,[s,t](λx) = sup
{s≤t0<...<tk≤t}

 k∑
j=1

∣∣λxtj − λxtj−1

∣∣p 1
p

= sup
{s≤t0<...<tk≤t}

 k∑
j=1

|λ|p
∣∣xtj − xtj−1

∣∣p 1
p

= |λ| sup
{s≤t0<...<tk≤t}

 k∑
j=1

∣∣xtj − xtj−1

∣∣p 1
p

= |λ|Varp,[s,t](x)
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and

Varp,[s,t](x+ y) = sup
{s≤t0<...<tk≤t}

 k∑
j=1

∣∣xtj − xtj−1 + ytj − ytj−1

∣∣p 1
p

Minkowski
≤

inequality
sup

{s≤t0<...<tk≤t}

 k∑
j=1

∣∣xtj − xtj−1

∣∣p 1
p

+

 k∑
j=1

∣∣ytj − ytj−1

∣∣p 1
p

≤Varp,[s,t](x) + Varp,[s,t](y).

For ξ ∈ Rn, we have

‖ξ‖q =

 n∑
j=1

|ξj |q
 1

q

= ‖ξ‖p

 n∑
j=1

(
|ξj |
‖ξ‖p

)q
 1

q

≤ ‖ξ‖p

 n∑
j=1

(
|ξj |
‖ξ‖p

)p
 1

q

= ‖ξ‖p

(
‖ξ‖pp
‖ξ‖pp

) 1
q

= ‖ξ‖p ,

where the inequality comes from the fact that t 7→ λt is non-increasing for λ ∈ [0, 1]. With that
it follows

Varq,[s,t](x) ≤ Varp,[s,t](x).

Lemma 2.3:
Let x : [0, T ]→ Rn be a path and 0 ≤ s < u < t ≤ 1. Then it holds

Varpp,[s,u](x) + Varpp,[u,t](x) ≤ Varpp,[s,t](x).

Proof. Let {s ≤ t0 < ... < tk ≤ u} be a partition of [s, u] and let {u ≤ τ0 < ... < τκ ≤ t} be a
partition of [u, t]. Then

k∑
j=1

∣∣xtj − xtj−1

∣∣p + κ∑
`=1

∣∣xτ` − xτ`−1

∣∣p ≤ k∑
j=1

∣∣xtj − xtj−1

∣∣p + |xτ0 − xtk |p + κ∑
`=1

∣∣xτ` − xτ`−1

∣∣p
≤Varpp,[s,t](x).

Now, going to the supremum over partitions of [s, u] and [u, t] gives the assertion.

Lemma 2.4:
If x : [0, T ]→ Rn is continuous with Varp,[0,T ](x) <∞, then

(s, t) 7→ Varp,[s,t](x)

is uniformly continuous on ∆T = {(s, t)|0 ≤ s ≤ t ≤ T}.

Proof. We only show continuity in t. Continuity in s then follows by reflection of the underlying
path. Let ε > 0. By continuity of x, there exists a δ > 0, such that

|xt − xt+ξ| <
ε

2
∀ |ξ| < δ

and then, we can find a partition {s ≤ t0 < ... < tk = t} of [s, t], such that

Varp,[s,t](x) <
ε

2
+

 k∑
j=1

∣∣xtj − xtj−1

∣∣p 1
p

,
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since Varp,[s,t](x) is the supremum over partitions of [s, t]. Let max(tk−1, t − δ) < ul < t = tk.
By the triangle inequality of the p-norm on Rn, it holds

Varp,[s,t](x) <
ε

2
+

k−1∑
j=1

∣∣xtj − xtj−1

∣∣p + ∣∣xtk − xtk−1

∣∣p 1
p

≤ε
2
+

k−1∑
j=1

∣∣xtj − xtj−1

∣∣p + ∣∣xul
− xtk−1

∣∣p 1
p

︸ ︷︷ ︸
≤Varp,[s,ul](x)

+ |xtk − xul
|︸ ︷︷ ︸

≤ ε
2

.

We have shown that

0 ≤ Varp,[s,t](x)−Varp,[s,ul](x) < ε

for all max(tk−1, t− δ) < ul < t, which is the left-continuity of t 7→ Varp,[s,t](x).
For the right-continuity, take a partition {t ≤ t0 < ... < tk ≤ t+ δ} of [t, t+ δ] with

Varpp,[t,t+δ](x) <
ε

2
+

k∑
j=1

∣∣xtj − xtj−1

∣∣p .
Then

Varpp,[t,t+δ](x) <
ε

2
+

k∑
j=1

∣∣xtj − xtj−1

∣∣p
=
ε

2
+ |xt1 − xt0 |

p︸ ︷︷ ︸
≤ ε

2

+
k∑

j=2

∣∣xtj − xtj−1

∣∣p
︸ ︷︷ ︸

≤Varp
p,[t1,t+δ]

(x)

≤ε+Varpp,[t1,t+δ](x).

By Lemma 2.3

Varpp,[t,ur]
(x) ≤ Varpp,[t,t1](x) ≤ Varpp,[t,t+δ](x)−Varpp,[t1,t+δ](x) ≤ ε,

for all t < ur < t1. Now we need to incorporate the left point s. We therefore consider two new,
continuous paths x(1), x(2) : [0, 1]→ Rn by setting

x(1)τ =

{
xτ τ < t

xt τ ≥ t
(4)

and

x(2)τ =

{
0 τ < t

xτ − xt τ ≥ t
.

Conveniently x(1) + x(2) ≡ x on [0, T ] and x(1) ≡ x on [0, t] ⊃ [s, t]. By the triangle inequality
(in Lemma 2.2)

0 ≤ Varp,[s,ur](x)−Varp,[s,t](x) ≤Varp,[s,ur](x
(1))︸ ︷︷ ︸

=Varp,[s,t](x)

+Varp,[s,ur](x
(2))︸ ︷︷ ︸

=Varp,[t,ur ](x)

−Varp,[s,t](x)

=Varp,[t,ur](x) ≤
p
√
ε

for all t < ur < t1, which is the right-continuity of t 7→ Varp,[s,t](x). Since ∆T ⊂ R2 is compact,
∆T 3 (s, t) 7→ Varp,[s,t](x) is also uniformly continuous.
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Example 2.5 (p-variation of Brownian Motion):
It is known, that Brownian motion has infinite 2-variation almost surely [FV10, Section 13.9].
Using Lemma 2.2, we see that it also has infinite p-variation for 1 ≤ p ≤ 2 almost surely. Since
Brownian motion has α-Hölder paths for every 0 < α < 1

2 almost surely [SP14, Section 10.1],
we see that it has finite p-variation for p > 2 almost surely: Let Π = {s ≤ t0 ≤ ... ≤ tk ≤ t} be
a partition of [s, t] and let p > 2. Then

k∑
j=1

∣∣Btj −Btj−1

∣∣p ≤ k∑
j=1

‖B‖p1
p
−Höl |tj − tj−1| = ‖B‖p1

p
−Höl |t− s| a.s.

and the p-variation is finite a.s.
We could also use this property instead of p-variation to define α-Hölder rough paths (α = 1

p),
substituting ‖x‖pα−Höl |t− s| for Varpp,[s,t](x) everywhere, but the p-variation version is a little
more general.

Remark 2.6:
One should not confuse 2-variation with quadratic variation. The quadratic variation of a
function f : [0, T ]→ Rn is defined by

[f, f ](T ) = lim
‖Π‖→0

n∑
j=1

|f(tj)− f(tj−1)|2 ,

where the limit is over a sequence of partitions of [0, T ] with mesh going to zero.
In particular, we have that for a standard Brownian Motion (Bt)0≤t≤T in R

Varp,[0,T ](Bt) =∞ a.s.

as we saw in Example 2.5, but

[Bt, Bt](T ) = T a.s.

if the meshes ‖Πj‖ go to zero fast enough, i.e. j2 ‖Πj‖
j→∞−−−→ 0, otherwise we only have conver-

gence in L2. [SP14, Section 9.1]

The p-variation is one example of a more general class of functions, we will call controlling
functions.

Definition 2.7 (Controlling Function):
Let ω : ∆T := {(s, t)|0 ≤ s ≤ t ≤ T} → R+. We call ω a controlling function, if

(i) ω is bounded,

(ii) ω is uniformly continuous,

(iii) ω is super-additive, i.e.

ω(s, u) + ω(u, t) ≤ ω(s, t)

for all 0 ≤ s ≤ u ≤ t ≤ T , and

(iv) ω(t, t) = 0 for all t ∈ [0, T ].

This definition is similar to [Lej03, Assumption 1].

Example 2.8 (Controlling Functions):
We consider some examples of controlling functions to use later on.
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(i) Let x be a process with finite p-variation. Then the mapping

(s, t) 7→ Varpp,[s,t](x)

is a controlling function by Lemma 2.2, Lemma 2.3, and Lemma 2.4.

(ii) The map

(s, t) 7→ |t− s|

is a controlling function.

(iii) Let ω1 and ω2 be controlling functions, then so is ω1 + ω2. In particular

(s, t) 7→ Varpp,[s,t](x) + |t− s|

is a controlling function.

Lemma 2.9:
Let ω be a controlling function and γ > 1. Then ωγ is super-additive.

Proof. Using the super-additivity of ω, we have

ωγ(s, t) ≥ (ω(s, u) + ω(u, t))γ ≥ ωγ(s, u) + ωγ(u, t)

for all 0 ≤ s ≤ u ≤ t ≤ T .

2.2 The Case p < 2

To define rough paths, we first look at the most simple case (p < 2). Here we can define certain
integrals without further information, using the standard way of Riemann sums.
Therefore, let 1 ≤ p < 2 and f : Rn → Rm×n be a bounded, α-Hölder continuous function, with
α > p− 1. Let x : [0, T ]→ Rn. For our summands of the Riemann sum, we approximate small
parts of the integral as follows. For 0 ≤ s ≤ t ≤ T , define

ys,t := f(xs)(xt − xs) ∈ Rm.

We then have

ys,t ≈
∫ t

s
f(xτ )dxτ

for small |t− s|. Now, for some partition Π = {s ≤ t0 < ... < tk ≤ t} of [s, t] we additionally
define

zΠs,t :=

k∑
j=1

ytj−1,tj

and the meshsize

‖Π‖ := sup
j=1,...,k

|tj − tj−1| .

Theorem 2.10:
For a sequence (Πj)j of partitions of [s, t] with vanishing mesh sizes, zΠj

s,t admits a unique limit
zs,t for every 0 ≤ s ≤ t ≤ T . The map (s, t) 7→ zs,t is continuous and we have the relation

zs,u + zu,t = zs,t

for all 0 ≤ s ≤ u ≤ t ≤ T . Furthermore, the map t 7→ z0,t has finite p-variation with

|zs,t| ≤ K Varp,[s,t](x)

for some K > 0.

9



At this point, we will outsource some of the technicalities of the proof of Theorem 2.10 into
another lemma. This is so that we can use it later on for the definition of the rough integral.
Both Theorem 2.10 and Lemma 2.11 are based on [Lej03, Proposition 1], while the sewing lemma
incorporates some arguments from [FH20, Lemma 4.2].

Lemma 2.11 (Sewing Lemma):
Let α, p > 1. Let ω be a controlling function. Let Aω

p be the space

Aω
p := {Y : {0 ≤ s ≤ t ≤ 1} → Rm | ∃C1 > 0 : |Ys,t|p ≤ C1ω(s, t) ∀0 ≤ s ≤ t ≤ T}

and

Aω
p,α :=

{
Y ∈ Aω

p | ∃C2 > 0 : |Ys,t − Ys,u − Yu,t| ≤ C2ω
α(s, t) ∀0 ≤ s ≤ u ≤ t ≤ T

}
.

There exists a unique continuous linear map I : Aω
p,α → Aω

p , such that there is C = C22
αζ(α) > 0,

with

|(IY)s,t − Ys,t| ≤Cωα(s, t);

this is called the maximal inequality.

In the literature, Lemma 2.11 is known as the sewing lemma, because it tells us how to sew the
increments Yt,t+∆t together, to gain an additive path Zs,t.

Proof. Let Y ∈ Aω
p,α,

C1 := sup
0≤s≤t≤1

|Ys,t|p

ω(s, t)
,

and

C2 := sup
0≤s≤u≤t≤1

|Ys,t − Ys,u − Yu,t|
ωα(s, t)

.

Step 1: Let 0 ≤ s < t ≤ T , {s ≤ t1 < ... < tk ≤ t} be a partition of [s, t] and set t0 = s and
tk+1 = t. If k ≥ 2, there exists an ` ∈ {1, ..., k}, such that

ω(t`−1, t`+1) ≤
2

k
ω(s, t).

Using the super-additivity of ω, we see

k∑
j=1

ω(tj−1, tj+1) ≤ 2ω(s, t).

Therefore, at least one summand has to fulfill the condition. For k = 1 the result holds with the
obvious choice ` = 1.
Step 2: Now, we fix a partition Π = {0 ≤ t1 < ... < tk ≤ T} of [0, T ] and for 0 ≤ s < t ≤ T let
Π[s,t] = Π ∩ [s, t]. If Π[s,t] = {s ≤ tj < ... < tΓ ≤ t} contains at least one point, we can use the
above to find an index ` ∈ N, such that

ω(t`−1, t`+1) ≤
2

#Π[s,t]
ω(s, t).

Let

ZΠ
s,t :=

Γ∑
i=j+1

Yti−1,ti .

10



Then ∣∣∣ZΠ
s,t − ZΠ\{t`}

s,t

∣∣∣ = ∣∣Yt`−1,t`+1
− Yt`−1,t` − Yt`,t`+1

∣∣
≤C2ω

α(t`−1, t`+1) ≤ C2

(
2

#Π[s,t]

)α

ωα(s, t)

and by iterating this process, we gain the maximal inequality∣∣ZΠ
s,t − Ys,t

∣∣ ≤ C22
αζ(α)︸ ︷︷ ︸

=:C3

ωα(s, t),

where ζ(α) =
∑∞

n=1
1
nα denotes the Riemann zeta function, which converges, since α > 1. The

constant C3 depends on p, α, and C2, but crucially not on s, t, or the partition Π.
Step 3: Let Π̃ be another partition of [0, T ]. We first assume Π ⊂ Π̃, then

∣∣∣ZΠ
s,t − ZΠ̃

s,t

∣∣∣ ≤ Γ∑
i=j+1

∣∣∣Yti−1,ti − ZΠ̃
ti−1,ti

∣∣∣ ≤ C3

Γ∑
i=j+1

ωα(ti−1, ti)

≤C3ω(s, t) sup
i=j+1,...,Γ

ωα−1(ti−1, ti) ≤ C3ω(0, T ) sup
0≤τ1≤τ2≤T
|τ1−τ2|≤‖Π‖

ωα−1(τ1, τ2).

For an arbitrary partition Π̃, we then get∣∣∣ZΠ
s,t − ZΠ̃

s,t

∣∣∣ ≤ ∣∣∣ZΠ
s,t − ZΠ∪Π̃

s,t

∣∣∣+ ∣∣∣ZΠ̃
s,t − ZΠ∪Π̃

s,t

∣∣∣
≤2C3ω(0, T ) sup

0≤τ1≤τ2≤T

|τ1−τ2|≤‖Π‖∨
∥∥∥Π̃∥∥∥

ωα−1(τ1, τ2)

uniformly in s and t. By the uniform continuity of ω, α−1 > 0, and ω(t, t) = 0 for all 0 ≤ t ≤ T ,
the right hand side goes to zero, as ‖Π‖ ∨

∥∥∥Π̃∥∥∥→ 0. Therefore, the limit

Zs,t := lim
‖Π‖→0

ZΠ
s,t

exists and is unique.
Step 4: By the maximal inequality,

|Zs,t − Ys,t| ≤ C3ω
α(s, t).

To show that indeed Zs,t ∈ Aω
p , we use

|Zs,t|p ≤ 2p |Zs,t − Ys,t|p + 2p |Ys,t|p ≤
(
2pCp

3ω
αp−1(0, T ) + 2pC1

)
ω(s, t),

as Y ∈ Aω
p . This also shows the boundedness of I : Y 7→ Z as an operator. By the definition

of the ZΠ
s,t and the linearity of the limit, I is linear and continuous, as a bounded, linear

operator.

Now, we can apply the sewing lemma to the theorem, we want to prove.

Proof of Theorem 2.10. We show that there exists a constant C > 0, such that

|ys,t − ys,u − yu,t| ≤ C Var1+α
p,[s,t](x).

Since f is α-Hölder, we can choose

C = sup
x 6=y

|f(x)− f(y)|
|x− y|α

<∞.
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Then we have

|ys,t − ys,u − yu,t| = |f(xs)(xt − xs)− f(xs)(xu − xs)− f(xu)(xt − xu)|
= |(f(xs)− f(xu))(xt − xu)| ≤ C |xs − xu|α |xt − xu|
≤C Varαp,[s,u](x)Varp,[u,t](x) ≤ C Var1+α

p,[s,t](x).

(5)

Additionally it holds

|ys,t| = |f(xs)(xt − xs)| ≤ ‖f‖∞ |xt − xs| ≤ ‖f‖∞Varp,[s,t](x).

Now, we can simply use the sewing lemma (Lemma 2.11) with ω(s, t) = Varpp,[s,t](x) to obtain
zs,t.

We can now define the value of the integral over one forms f(xt)dxt.

Definition 2.12:
Let 2 > p > 1. Let x : [0, T ] → Rn be a continuous path with finite p-variation and let
f : Rn → Rm×n be α-Hölder continuous with α > p − 1 and bounded. Let 0 ≤ s ≤ t ≤ T . We
then define ∫ t

s
f(xτ )dxτ := zs,t,

where zs,t is obtained from Theorem 2.10.

Remark 2.13:
The proof of Theorem 2.10 also works for f : [0, T ]→ Rm×n with

|ft − fs| ≤ C Varαp,[s,t](x)

and α > p− 1. In that case, we replace Equation (5) by

|ys,t − ys,u − yu,t| ≤ |fu − fs| |xt − xu| ≤ C Varαp,[s,u](x)Varp,[u,t](x) ≤ C Var1+α
p,[s,t](x).

The function ft is also automatically bounded, since

|ft| ≤ |f0|+ |ft − f0| ≤ |f0|+ C Varαp,[0,t](x) ≤ |f0|+ C Varαp,[0,T ](x) <∞.

Using this, we can define the integral ∫ t

s
fτdxτ := zs,t,

again by Theorem 2.10.

Remark 2.14:
The above lets us construct the iterated integrals of x : [0, T ]→ Rn. Consider fj : [0, T ]→ R1×n

fj(t) := (0, ..., 0, 1, 0, ..., 0),

where the 1 is in the j-th component of fj . Then fj obviously fulfills the conditions of Re-
mark 2.13, and we can define ∫ t

s
dx(j)τ :=

∫ t

s
fjdxτ (= x

(j)
t − x(j)s ).

12



We also get the rather obvious estimate
∣∣∣x(j)t − x

(j)
s

∣∣∣ ≤ C Varp,[s,t](x). Now, we can define the
further iterated integrals by induction. Let J = (j1, ..., jm) ∈ {1, ..., n}m and let

zJs,t =

∫
s≤t1≤...≤tn≤t

dxj1t1 ...dx
jn
tn ,

together with a constant KJ , such that∣∣zJs,t∣∣ ≤ KJ Varp,[s,t](x)

Then we define for jn+1 ∈ {1, ..., n}

z
(j1,...,jn+1)
s,t :=

∫
s≤t1≤...≤tn≤tn+1≤t

dxj1t1 ...dx
jn
tndx

jn+1

tn+1
:=

∫ t

s
fjn+1z

J
s,τdxτ ,

using Remark 2.13 with α = 1. We also get the existence of K(j1,...,jn+1) with∣∣∣z(j1,...,jn+1)
s,t

∣∣∣ ≤ K(j1,...,jn+1)Varp,[s,t](x).

2.3 Tensor Calculus

To expand these calculations to 2 ≤ p < 3 and be able to rigorously define the iterated integrals,
later on, we first need to define the tensor calculus.

Definition 2.15 (Tensor Calculus):
Let n, k ∈ N and {e(i)}ni=1 be the canonical basis of Rn. Let

W∞(Rn) := span
{
R,Rn, (Rn)⊗2 , ...

}
,

Wk(Rn) := span
{
R,Rn, (Rn)⊗2 , ..., (Rn)⊗k

}
and let

T∞(Rn) :=1 + span {Rn,Rn ⊗ Rn, ...} ⊂W∞(Rn),

Tk(Rn) :=1 + span
{
Rn,Rn ⊗ Rn, ..., (Rn)⊗k

}
⊂Wk(Rn).

These are all understood to be formal sums. For example, T∞(Rn) is the set of formal sums

1 + x1 + ...+ xk + ... = 1 +

n∑
i=1

x
(i)
1︸︷︷︸
∈R

e(i) + ...+

n∑
i1,...,ik=1

x
(i1,...,ik)
k︸ ︷︷ ︸
∈R

e(i1) ⊗ ...⊗ e(ik) + ...

for xj ∈ (Rn)⊗j .
Let x = x0 + x1 + ...+ xk + ...,y = y0 + y1 + ...+ yk + ... ∈ W∞(Rn) with xj , yj ∈ (Rn)⊗j and
x0 = y0 = 0. Using the convention 1 ⊗ x = x ⊗ 1 = x for x ∈ (Rn)⊗j , we can now define the
tensor product of x and y to be

x⊗ y :=

∞∑
i,j=1

xi ⊗ yj︸ ︷︷ ︸
∈(Rn)⊗(i+j)

.

Here, we just extend the tensor product bilinearly. We do not run into problems regarding the
convergence of this sum, since for each tensor level, there are only finitely many summands.
We define the tensor product on Wk(Rn), by first applying the tensor product on W∞(Rn) and
after that applying the canonical projection from W∞(Rn) to Wk(Rn), i.e. ignoring summands
of tensor level > k. When taking the tensor product in Wk(Rn), we can safely take x0 and y0
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to be something different than zero, as we only have finitely many summands anyways. We will
also write

x⊗j := x⊗ ...⊗ x︸ ︷︷ ︸
j times

for j ∈ N.

The following lemma is a generalization of statements from [FH20, Section 2.3] to k > 2.

Lemma 2.16:
Let x ∈ T∞(Rn) or x ∈ Tk(Rn). Then x has an inverse element x⊗−1, such that

x⊗ x⊗−1 = x⊗−1 ⊗ x = 1.

Proof. Let a := x− 1 ∈W∞(Rn). Then all summands of a are of tensor level ≥ 1. We set

x⊗−1 := 1 +
∞∑
j=1

(−1)j a⊗j .

This sum converges, as we only have finitely many summands for each tensor level (all summands
of a⊗j have tensor level ≥ j). Then

x⊗ x⊗−1 =(1 + a)⊗

1 +

∞∑
j=1

(−1)j a⊗j

 = 1 +

∞∑
j=1

(−1)j a⊗j + a+

∞∑
j=1

(−1)j a⊗j+1

=1− a+
∞∑
j=2

(−1)j a⊗j + a+
∞∑
j=2

(−1)j−1 a⊗j = 1.

Analogously, one obtains x⊗−1⊗x = 1. In the case of Tk, the calculation is the same, just stopped
at tensor level k, as in this case all tensors of higher levels just become zero by definition.

We will also need the following:

Lemma 2.17:
Let x ∈ Rn and y ∈ Rm. Then

|x⊗ y| = |x| |y| .

Proof. Let x =
∑n

i=1 xie
(i) and y =

∑m
j=1 yje

(j). By Parseval’s identity, we have

|x⊗ y|2 =

∣∣∣∣∣∣
n∑

i=1

m∑
j=1

xiyje
(i) ⊗ e(j)

∣∣∣∣∣∣
2

=
n∑

i=1

m∑
j=1

|xi|2 |yj |2 =

(
n∑

i=1

|xi|2
) m∑

j=1

|yj |2
 = |x|2 |y|2 ,

as {e(i) ⊗ e(j)|i = 1, ..., n, j = 1, ...,m} is an orthonormal basis of Rn ⊗ Rm.

To make notation simpler, let us introduce the following: For

yt =
∑

1≤i1,...,ik≤n

y
(i1,...,ik)
t e(i1) ⊗ ...⊗ e(ik),

a (Rm)⊗k valued function, and the Rn-valued path x : [0, T ]→ Rn, we define the tensor integral
to be the shorthand notation∫ t

s
yτ ⊗ dxτ :=

∑
1≤i1,...,ik,j≤n

∫ t

s
y(i1,...,ik)τ dx(j)τ e(i1) ⊗ ...⊗ e(ik) ⊗ e(j) ∈ (Rm)⊗k ⊗ Rn.
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We can now adapt the result of Remark 2.14 to this notation:∫
s≤t1≤...≤tk≤t

dxt1 ⊗ ...⊗ dxtk :=
∑

1≤i1,...,ik≤n

z
(i1,...,ik)
s,t e(i1) ⊗ ...⊗ e(ik) ∈ (Rn)⊗k ,

where the z(i1,...,ik)s,t are defined by Remark 2.14.
To generalize our results from Section 2.2, we need to introduce multiplicative functionals, based
on the notation of [Lej03, Section 3.3]:

Definition 2.18:
Let k ∈ N and x : {0 ≤ s ≤ t ≤ T} → Tk(Rn). We call x a multiplicative functional if

xs,u ⊗ xu,t = xs,t

for all 0 ≤ s ≤ u ≤ t ≤ T . Sk(Rn) is the set of all multiplicative functionals mapping to Tk(Rn).
This is not a linear space.

Remark 2.19:
We want the k-th tensor level of a multiplicative functional to represent the k-th iterated integrals
of a given path x : [0, T ]→ Rn, i.e.

xk
s,t“ = ”

∫
s≤t1≤...≤tk≤t

dxt1 ⊗ ...⊗ dxtk =

∫ t

s
xk−1
s,τ ⊗ dxτ .

This makes the rule from Definition 2.18 natural, since

x1
s,u + x1

u,t =

∫ u

s
dxτ +

∫ t

u
dxτ =

∫ t

s
dxτ = x1

s,t,

as well as

x2
s,u + x2

u,t“ = ”

∫ u

s
(xτ − xs)⊗ dxτ +

∫ t

u
(xτ − xu)⊗ dxτ

=

∫ t

s
xτ ⊗ dxτ − xs ⊗ (xu − xs)− xu ⊗ (xt − xu)

=

∫ t

s
xτ ⊗ dxτ − xs ⊗ (xt − xs) + xs ⊗ (xt − xu)− xu ⊗ (xt − xu)

=

∫ t

s
(xτ − xs)⊗ dxτ − (xu − xs)⊗ (xt − xu)“ = ”x2

s,t − xs,u ⊗ xu,t.

(6)

for xs,t = 1 + x1
s,t + x2

s,t ∈ S2(Rn) with x1
s,t := xt − xs and 0 ≤ s ≤ u ≤ t ≤ 1. Then

xs,u ⊗ xu,t =
(
1 + x1

s,u + x2
s,u

)
⊗
(
1 + x1

u,t + x2
u,t

)
=1 + x1

s,u + x1
u,t︸ ︷︷ ︸

=x1
s,t

+x2
s,u + x2

u,t + x1
s,u ⊗ x1

u,t︸ ︷︷ ︸
=x2

s,t

= xs,t.

We can now extend the semi-norm of p-variation to Sk(Rn):

Definition 2.20:
Let p ≥ 1. Let x = 1 + x1 + ...+ xk ∈ Sk(Rn) with xj : {0 ≤ s ≤ t ≤ T} → (Rn)⊗j . We define
the p-variation of x to be

Varp,[s,t](x) :=
k∑

j=1

(
Var p

j
,[s,t](x

j)
) 1

j
.
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Here

Varq,[s,t](x
j) := sup

{s≤t0<...<tk≤t}

(
k∑

i=1

∣∣∣xj
ti−1,ti

∣∣∣q)
1
q

for q > 0. In particular, we then also have∣∣∣xj
s,t

∣∣∣ ≤ Varjp,[s,t](x)

for all j = 1, ..., k. We also define the p-variation distance of x,y ∈ Sk(Rn) to be

dp−var;[s,t](x,y) := Varp,[s,t](x− y).

This is only one of the possible definitions for combining the p-variations of the multiple tensor
levels, which is based on [Lej03, Section 6.1].
For a path x : [0, T ]→ Rn and [(s, t) 7→ xs,t := 1 + xt − xs] ∈ S1(Rn), we then have

Varp,[s,t](x) = Varp,[s,t](x).

Now using these definitions, we can finally define rough paths.

Definition 2.21 (Rough Path):
Let p ≥ 1. A p-rough path is a continuous multiplicative functional x ∈ Sbpc(Rn), such that

Varp,[0,T ](x) <∞.

We will also identify the rough path x with the function [0, T ] 3 t 7→ x0,t ∈ Tbpc(Rn), as we can
simply get back the other values using the identity

xs,t = x⊗−1
0,s ⊗ x0,t.

This makes x a path and not some two-variable function. Let Ωp = Ωp(Rn) be the space of
Rn-valued p-rough paths, equipped with the topology induced by the p-variation semi-norm.
An important subclass of rough paths are geometric rough paths, which we will need later on:

Definition 2.22 (Geometric Rough Path):
Let p > 1. A p-rough path x ∈ Ωp(Rn) is called a geometric p-rough path or just geometric rough
path, if there is a sequence (xn) ⊂ Ωp(Rn) of piecewise smooth paths with iterated integrals
defined by the usual path integral, i.e.

(xk
n)s,t =

∫ t

s
(xk−1

n )s,τ ⊗ d(xn)τ =

∫ t

s
(xk−1

n )s,τ ⊗
∂

∂t
(x1

n)τdτ

for k = 2, ..., bpc, such that

dp−var(x,xn)
n→∞−−−→ 0.

GΩp = GΩp(Rn) is the set of geometric p-rough paths.

Remark 2.23:
A stochastic process xt with finite p-variation for 3 > p and the first iterated integral defined
by the Stratonovich integral is a geometric rough path. In particular

BStrat
t := 1 +Bt +

∫ t

0
Bτ ⊗ ◦dBt︸ ︷︷ ︸

=
B2
t
2

for n=1

is a geometric p-rough path for all p > 2 [FH20, Section 3.3].

16



Example 2.24 (Geometric Rough Path Lifts):
A rough path lift of a process x : [0, T ]→ Rn is a p-rough path x = 1+x1+x2+ ...+xbpc, such
that x1

s,t = xt − xs for all s < t, i.e. it is a rough path x with Rn-component corresponding to
the original process x. Some examples of geometric rough path lifts include the following:

• Semi-martingales: Semi-martingales can be lifted to geometric p-rough paths for p ∈
(2, 3) [Lyo98; FV10; CL05; KLA20].

• Lévy-processes: Lévy-processes can be lifted to geometric p-rough paths [FS17; Che17;
KLA20]. It can of course happen that we need p ≥ 3, which we do not cover explicitly,
but for which these results also hold with analogous proofs.

• Fractional Brownian motion: Fractional Brownian motion with Hurst parameter H >
1
4 can be lifted to a geometric p-rough path for p > 1

H [CQ02; KLA20].

2.4 The Case 2 ≤ p < 3

For p ≥ 2, the above construction of the integral (Theorem 2.10) still works, if we use α-Hölder
functions, with α large enough, but this rules out more and more functions, with increasing
roughness. In particular, we can’t define the iterated integrals anymore, but these will be
essential for defining the signature of a process, later on.
Therefore, we need to refine our process. The problem we have to face is, that the ys,t do not
converge fast enough, and so the upper bound in Equation (5) will be too large. Before, we
approximated the integral by∫ t

s
f(xτ )dxτ ≈

∫ t

s
f(xs)dxτ = f(xs)(xt − xs).

Now, for faster convergence, we can approximate f by a two-step Taylor series, instead of only
using the first term. For f ∈ C1(Rn,Rm×n) we let f1, ..., fn ∈ C(Rn,Rm) and∫ t

s
fi(xτ )dx

(i)
τ ≈

∫ t

s
fi(xs) +∇fi(xs)T (xτ − xs)dx(i)τ

=fi(xs)(x
(i)
t − x(i)s ) +

n∑
j=1

∂fi

∂x(j)
(xs)

∫ t

s
(x(j)τ − x(j)s )dx(i)τ .

Let

x1
s,t := xt − xs =

∫ t

s
dxτ .

Now suppose, we know the second order iterated integrals of x

x2
s,t =

∫
s≤t1≤t2≤t

dxt1 ⊗ dxt2 ∈ Rn ⊗ Rn (7)

with ∣∣x2
s,t

∣∣ p2 ≤ Varpp,[s,t](x). (8)

Now, xs,t := 1 + x1
s,t + x2

s,t will be the rough path, that we can use to construct the integral.
One can choose any x2

s,t, as long as it fulfills the conditions of Equation (8) and Definition 2.18.
One possible choice always is

xk
s,t :=

(xt − xs)⊗k

k!
.
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Let
ys,t := f(xs)x

1
s,t +Df(xs)x

2
s,t,

where Df(x) ∈ L(Rn ⊗ Rn,Rm) is the biliniear map defined by

Df(x)e(i) ⊗ e(j) = ∂fj

∂x(i)
(x) ∈ Rm.

For a partition Π = {s ≤ t0 < ..., tk ≤ t} of [s, t] again set

zΠs,t :=

k∑
j=1

ytj−1,tj .

Theorem 2.25:
Let 2 ≤ p < 3. Let x be defined as above, i.e. x is a p-rough path, and f be a continuous,
bounded function, with α-Hölder continuous, bounded derivatives for some α > p − 2. For any
sequence (Πj)j of partitions of [s, t] with vanishing meshes, zΠj

s,t admits a unique limit zs,t for
every 0 ≤ s ≤ t ≤ 1. The map (s, t) 7→ zs,t is continuous and we have the relation

zs,u + zu,t = zs,t

for all 0 ≤ s ≤ u ≤ t ≤ T . Furthermore, zs,t has finite p-variation with

Varp,[s,t](z) ≤ K Varp,[s,t](x).

This theorem for defining the integral over one-forms is from [Lej03, Section 3.2].

Proof. We need to show that for 0 ≤ s ≤ u ≤ t ≤ 1, there is some constant C such that
|ys,t − ys,u − yu,t| ≤ C Var2+α

p,[s,t](x),

to apply Lemma 2.11. Let

N(f) := inf

{
M > 0

∣∣∣∣∣ ‖f‖∞,Imx ≤M and ‖Df‖∞,Imx ≤M and sup
x 6=y

|Df(x)−Df(y)|
|x− y|α

≤M

}
.

By the requirements we placed on f , N(f) is necessarily finite. Then, by the Taylor-Formula,
we have

f(b) = f(a) +
n∑

j=1

∂f

∂x(j)
(a)(bj − aj) +R(a, b)

for a, b ∈ Rn. Here

|R(a, b)| =

∣∣∣∣∣∣∣∣∣
n∑

j=1

∫ 1

0

(
∂f

∂x(j)
(a)− ∂f

∂x(j)
(a+ (b− a)r)

)
︸ ︷︷ ︸

‖ · ‖≤N(f)|b−a|αrα

(bj − aj)dr

∣∣∣∣∣∣∣∣∣ ≤ nN(f) |b− a|1+α . (9)

Then we can use L(Rn ⊗ Rn,Rm)=̂L(Rn,L(Rn,Rm)) via [x ⊗ y 7→ f(x ⊗ y)]=̂[x 7→ fx = [y 7→
f(x⊗ y)]] to see
|ys,t − ys,u − yu,t| =

∣∣f(xs)x1
s,t +Df(xs)x

2
s,t − f(xs)x1

s,u

−Df(xs)x2
s,u − f(xu)x1

u,t −Df(xu)x2
u,t

∣∣
=
∣∣(f(xs)− f(xu))x1

u,t + (Df(xs)−Df(xu))x2
u,t +Df(xs)x

1
s,u ⊗ x1

u,t

∣∣
≤
∣∣(Df(xs)−Df(xu))x2

u,t

∣∣+ ∣∣(f(xs)− f(xu) +Df(xs)x
1
s,u

)
x1
u,t

∣∣
≤
∣∣(Df(xs)−Df(xu))x2

u,t

∣∣+ ∣∣R(xs, xu)x1
u,t

∣∣
≤N(f)

∣∣x1
s,u

∣∣α ∣∣x2
u,t

∣∣+ nN(f)
∣∣x1

s,u

∣∣1+α ∣∣x1
u,t

∣∣
≤(1 + n)N(f)Var2+α

p,[s,t](x).

Now the sewing lemma (Lemma 2.11) gives the assertion.
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Definition 2.26:
We can now define the integral of the one form f(xτ )dxτ for f bounded with bounded, α-Hölder
derivatives for α > p− 2: ∫ t

s
f(xτ )dxτ := zs,t,

where zs,t is constructed in Theorem 2.25. Note that we are no longer integrating with respect
to the path x, but with respect to the rough path x.

The essential property, the proof of Theorem 2.25 relies on Equation (9):∣∣f(xt)− f(xs)−Df(xs)x1
s,t

∣∣ ≤ C Var1+α
p,[s,t](x).

This gives rise to the notion of controlled rough paths. Our notion of controlled paths, as well
as Theorem 2.29, are loosely based on [FH20, Section 4.3].

Definition 2.27 (Controlled Rough Paths):
Let 2 ≤ p < 3, ω : ∆+

T → R+ be a controlling function. Let W be a Banach space and let x be
a Rn-valued p-rough path dominated by ω, i.e.

Varpp,[s,t](x) ≤ ω(s, t).

We call the bounded map Y : [0, T ]→W controlled by x (via ω), if there exists a bounded map
Y ′ : [0, T ]→ L(Rn,W ), γ > p− 2 and C > 0 with∥∥Yt − Ys − Y ′

sx
1
s,t

∥∥
W
≤Cω

1+γ
p (s, t),∥∥Y ′

t − Y ′
s

∥∥
L(Rn,W )

≤Cω
γ
p (s, t).

Y ′ is called a Gubinelli derivative of Y and is not unique. Let Dγ
ω,x = Dγ

ω,x(W ) be the space of
the controlled rough paths (Y, Y ′) endowed with the semi norm∥∥(Y, Y ′)

∥∥
Dγ

ω,x
:= inf

{
C > 0

∣∣∣ ∥∥Yt − Ys − Y ′
sx

1
s,t

∥∥
W
≤ Cω

1+γ
p (s, t)

}
+ inf

{
C > 0

∣∣∣ ∥∥Y ′
t − Y ′

s

∥∥
L(Rn,W )

≤ Cω
γ
p (s, t)

}
.

We will use the short-hand Dγ
x := Dγ

(s,t)7→Varp
p,[s,t]

(x),x
and sometimes also RY

s,t = Yt−Ys−Y ′
sx

1
s,t.

Using the definition, we see that

‖Yt − Ys‖W ≤
∥∥(Y, Y ′)

∥∥
Dγ

ω,x
ω

1+γ
p (s, t) +

∥∥Y ′∥∥
∞ ω

1
p (s, t)

≤
∥∥(Y, Y ′)

∥∥
Dγ

ω,x
ω

1+γ
p (s, t) +

(∥∥(Y, Y ′)
∥∥
Dγ

ω,x
ω

γ
p (0, T ) + ‖Y0‖

)
ω

1
p (s, t)

≤
(
2
∥∥(Y, Y ′)

∥∥
Dγ

ω,x
ω

γ
p (0, T ) + ‖Y0‖

)
ω

1
p (s, t).

(10)

Even though Ωp is not even a vector space, the space Dγ
ω,x(W ) is a Banach space (with respect

to the norm ‖Y0‖+ ‖Y ′
0‖+ ‖(Y, Y ′)‖Dγ

ω,x
), that depends on x ∈ Ωp. We have a Leibniz rule for

the Gubinelli derivative, based on [FH20, Lemma 7.5], in the following sense:

Lemma 2.28 (Leibniz Rule):
Let 1 ≥ γ > p− 2 and let (Y, Y ′) ∈ Dγ

ω,x(L(W,W )), (Z,Z ′) ∈ Dγ
ω,x(W ) be two controlled rough

paths. Then (U,U ′) with

U =Y Z ∈W
U ′ =Y Z ′ + Y ′Z ∈ L(Rn,W )
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is a controlled rough path in Dγ
ω,x(W ). Where Y ′Z is the map

Y ′Zx := Y ′(x)(Z) ∈W

for x ∈ Rn, since Y ′ ∈ L(Rn,L(W,W )). We also have∥∥(U,U ′)
∥∥
Dγ

ω,x
≤ C

(
‖Y0‖+

∥∥Y ′
0

∥∥+ ∥∥(Y, Y ′)
∥∥
Dγ

ω,x

)(
‖Z0‖+

∥∥Z ′
0

∥∥+ ∥∥(Z,Z ′)
∥∥
Dγ

ω,x

)
.

Proof. It holds∥∥Ut − Us − U ′
sx

1
s,t

∥∥
W

=
∥∥YtZt − YsZs − YsZ ′

sx
1
s,t − Y ′

sZsx
1
s,t

∥∥
≤
∥∥YsZt − YsZs − YsZ ′

sx
1
s,t

∥∥+ ∥∥YtZt − YsZt − Y ′
sZtx

1
s,t

∥∥
+
∥∥Y ′

s (Zt − Zs)x
1
s,t

∥∥
≤‖Ys‖

∥∥(Z,Z ′)
∥∥
Dγ

ω,x
ω

1+γ
p (s, t) + ‖Zt‖

∥∥(Y, Y ′)
∥∥
Dγ

ω,x
ω

1+γ
p (s, t)

+
∥∥Y ′

s

∥∥ ‖Zt − Zs‖ω
1
p (s, t).

Using Equation (10), we get

‖Ys‖ ≤ ‖Y0‖+ ‖Ys − Y0‖ ≤ ‖Y0‖+
(
2
∥∥(Y, Y ′)

∥∥
Dγ

ω,x
ω

γ
p (0, T ) + ‖Y0‖

)
ω

1
p (0, T )

and its analog for Zs. We can estimate the last summand by∥∥Y ′
s

∥∥ ≤ ∥∥Y ′
0

∥∥+ ∥∥Y ′
s − Y ′

0

∥∥ ≤ ∥∥Y ′
0

∥∥+ ∥∥(Y, Y ′)
∥∥
Dγ

ω,x
ω

γ
p (0, T )

and

‖Zt − Zs‖ ≤
(
2
∥∥(Z,Z ′)

∥∥
Dγ

ω,x
ω

γ
p (s, t) + ‖Z0‖

)
ω

1
p (s, t).

For the other term, we see that∥∥YtZ ′
t + Y ′

tZt − YsZ ′
s − Y ′

sZs

∥∥ ≤∥∥YtZ ′
t − YtZ ′

s

∥∥+ ∥∥YtZ ′
s − YsZ ′

s

∥∥
+
∥∥Y ′

tZt − Y ′
tZs

∥∥+ ∥∥Y ′
tZs − Y ′

sZs

∥∥
≤‖Yt‖

∥∥Z ′
t − Z ′

s

∥∥+ ∥∥Z ′
s

∥∥ ‖Yt − Ys‖
+
∥∥Y ′

t

∥∥ ‖Zt − Zs‖+ ‖Zs‖
∥∥Y ′

t − Y ′
s

∥∥
All in all, we can find C > 0 only dependent on x and γ, such that∥∥(U,U ′)

∥∥
Dγ

ω,x
≤ C

(
‖Y0‖+

∥∥Y ′
0

∥∥+ ∥∥(Y, Y ′)
∥∥
Dγ

ω,x

)(
‖Z0‖+

∥∥Z ′
0

∥∥+ ∥∥(Z,Z ′)
∥∥
Dγ

ω,x

)
.

We can now define the integral of a controlled rough path, with respect to the rough path x.
This result goes back to [Gub04].

Theorem 2.29:
Let 3 > p ≥ 2 and 1 + x1

s,t + x2
s,t ∈ Ωp be a rough path with values in Rm. Let γ > p− 2 and let

(Y, Y ′) ∈ Dγ
ω,x(L(Rn,Rm)) be a controlled rough path. Then the limit

zs,t := lim
‖{s≤t0<...tk≤t}‖→0

k∑
j=1

(
Ytj−1x

1
tj−1,tj + Y ′

tj−1
x2
tj−1,tj

)
exists, is unique, and we have∣∣zs,t − Ysx1

s,t + Y ′
sx

2
s,t

∣∣ ≤ C ∥∥(Y, Y ′)
∥∥
Dγ

ω,x
ω

2+γ
p (s, t)

with C = 2
2+γ
p

+1
ζ
(
2+γ
p

)
, as well as (z0,·, Y ) ∈ Dγ∧1

ω,x (Rm).
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Proof. To show the existence and uniqueness of z, we again use the sewing lemma (Lemma 2.11).
Let

ys,t := Ysx
1
s,t + Y ′

sx
2
s,t.

Analogous to the proof of Theorem 2.25, we can then show that

|ys,t − ys,u − yu,t| =
∣∣(Ys − Yu)x1

u,t + (Y ′
s − Y ′

u)x
2
u,t + Y ′

sx
1
s,u ⊗ x1

u,t

∣∣
≤
∥∥(Y, Y ′)

∥∥
Dγ

ω,x

(
ω

2+γ
p (s, t) + ω

2+γ
p (s, t)

)
≤ 2

∥∥(Y, Y ′)
∥∥
Dγ

ω,x
ω

2+γ
p (s, t)

and

|ys,t| ≤ ‖Y ‖∞ ω
1
p (s, t) +

∥∥Y ′∥∥
∞ ω

2
p (s, t) ≤

(
‖Y ‖∞ +

∥∥Y ′∥∥
∞ ω

1
p (0, T )

)
ω

1
p (s, t).

Now, the sewing lemma (Lemma 2.11) gives the existence and uniqueness of zs,t. This also gives∣∣zs,t − Ysx1
s,t − Y ′

sx
2
s,t

∣∣ ≤ 2
2+γ
p

+1
ζ

(
2 + γ

p

)∥∥(Y, Y ′)
∥∥
Dγ

ω,x
ω

2+γ
p (s, t).

Therefore∣∣zs,t − Ysx1
s,t

∣∣ ≤ ∣∣zs,t − Ysx1
s,t − Y ′

sx
2
s,t

∣∣+ ∣∣Y ′
sx

2
s,t

∣∣
≤2

2+γ
p

+1
ζ

(
2 + γ

p

)∥∥(Y, Y ′)
∥∥
Dγ

ω,x
ω

2+γ
p (s, t) +

∥∥Y ′∥∥
∞ ω

2
p (s, t)

≤
(
2

2+γ
p

+1
ζ

(
2 + γ

p

)∥∥(Y, Y ′)
∥∥
Dγ

ω,x
ω

γ
p (0, T ) +

∥∥Y ′∥∥
∞

)
ω

2
p (s, t).

(11)

Using Equation (10), we get (z0,·, Y ) ∈ Dγ∧1
x (Rm)

Now, we can define the integral of a controlled rough path:

Definition 2.30:
Let 3 > p ≥ 2 and 1 + x1

s,t + x2
s,t ∈ Ωp be a rough path with values in Rm. Let γ > p − 2 and

let (Y, Y ′) ∈ Dγ
ω,x(L(Rn,Rm)) be a controlled rough path. We define∫ t

s
Yτdxτ := zs,t,

where z is obtained from Theorem 2.29. Note that we suppress the dependence on Y ′ in our
notation.

Remark 2.31:
We can get back the Itô-integral from Definition 2.30 in the special case, where we consider the
rough path

BItô
t := 1 +Bt +

∫ t

0
Bτ ⊗ dBτ ,

where Bt is a standard Brownian motion in Rn and the integral on the right hand side is the
Itô-integral with symmetric part

Sym

(∫ t

0
Bτ ⊗ dBτ

)
=

1

2
Bt ⊗Bt −

t

2
1,

where 1 is the identity matrix. The resulting rough integral with respect to BItô
t then coincides

with the Itô-integral [FH20, Section 5.1]. Similarly, we can construct the Stratonovich integral
of Brownian motion, by integrating with respect to the rough path

BStrat
t := 1 +Bt +

∫ t

0
Bτ ⊗ ◦dBτ ,
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where the integral on the right hand side is the Stratonovich integral with symmetric part

Sym

(∫ t

0
Bτ ⊗ ◦dBτ

)
=

1

2
Bt ⊗Bt

[FH20, Section 5.2].

We can finally construct the iterated integrals of a rough path for 3 > p ≥ 2 analogous to
Remark 2.14:

Remark 2.32:
Consider again fj : [0, T ]→ R1×n

fj(t) := (0, ..., 0, 1, 0, ..., 0)

with 1 in the j-th component. Then obviously (fj , 0) ∈ D1
x(L(Rn,R)). Now we can use Theo-

rem 2.29, to construct ∫ t

s
dx(j)

τ := z
(j)
s,t :=

∫ t

s
fjdxτ .

Then (z
(j)
s,t , fj) ∈ D1

x(R). Now we can define the iterated integrals inductively: Let J =
(j1, ..., jm) ∈ {1, ..., n}m and let

zJs,t =

∫
s≤t1≤...≤tn≤t

dxj1
t1
...dxjm

tm ,

with (zJs,·,
(
zJs,·
)′
) ∈ D1

x(R). Then for jm+1 ∈ {1, ..., n}(
fjm+1z

J
s,·, e

i 7→ δi,jm+1

(
zJs,·
)′) ∈ D1

x(L(Rn,R)).

We then define∫
s≤t1≤...≤tm+1≤t

dxj1
t1
...dx

jm+1

tm+1
:= z

(j1,...,jm+1)
s,t :=

∫ t

s
fjm+1z

J
s,tm+1

dxtm+1

and get
(
z
(j1,...,jm+1)
s,· , fjm+1z

J
s,·

)
∈ D1

x(R). Using the notation of the tensor integral, we can write∫
s≤t1≤...≤tm≤t

dxt1 ⊗ ...⊗ dxtm =

n∑
j1,...,jm=1

z
(j1,...,jm)
s,t e(j1) ⊗ ...⊗ e(jm).

2.5 Stability of rough integration

Since we want to approximate an infimum, we will use sequences of solutions to RDEs. To
ensure the convergence of these sequences, we need to study the stability of rough integration.
This section is a generalization of [FH20, Theorem 4.17].
Let 3 > p ≥ 2, γ > p−2, and let W be a Banach space. Consider two p-rough paths x ∈ Ωp(Rn)
and x̃ ∈ Ωp(Rn). Let ω1 be a controlling function for x and (Y, Y ′) ∈ Dγ

ω1,x be an x-controlled
rough path. Similarly, let ω2 be a controlling function for x̃ and (Ỹ , Ỹ ′) ∈ Dγ

ω2,x̃
be an x̃-

controlled rough path. In particular, we have (Y, Y ′) ∈ Dγ
ω,x and (Ỹ , Ỹ ′) ∈ Dγ

ω,x̃ for ω = ω1+ω2.
As always, we consider the fixed time horizon [0, T ]. For the stability of rough integration, we
need a notion of distance between (Y, Y ′) and (Ỹ , Ỹ ′), even though in general, they may lie in
different Banach spaces. Recall the definition of the semi-norm on Dγ

ω,x. This leads us to the
following definition∥∥∥Y, Y ′; Ỹ , Ỹ ′

∥∥∥
x,x̃,ω,γ

:= inf
{
C > 0

∣∣∣ ∥∥∥Yt − Ys − Y ′
sx

1
s,t − Ỹt + Ỹs + Ỹ ′

s x̃
1
s,t

∥∥∥
W
≤ Cω

1+γ
p (s, t)

}
+ inf

{
C > 0

∣∣∣∣ ∥∥∥Y ′
t − Y ′

s − Ỹ ′
t + Ỹ ′

s

∥∥∥
L(Rn,W )

≤ Cω
γ
p (s, t)

}
.
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We have ∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

≤
∥∥(Y, Y ′)

∥∥
Dγ

ω,x
+
∥∥∥(Ỹ , Ỹ ′)

∥∥∥
Dγ

ω,x̃

.

Let

dpω(x, x̃) := sup
s<t

dpp−var;[s,t](x, x̃)

ω(s, t)
≤ 2.

Then it also holds∥∥∥Ys,t − Ỹs,t∥∥∥
W
≤
∥∥∥Ys,t − Ỹs,t − Y ′

sx
1
s,t + Ỹ ′

s x̃
1
s,t

∥∥∥
W

+
∥∥∥Y ′

sx
1
s,t − Ỹ ′

s x̃
1
s,t

∥∥∥
≤
∥∥∥Y, Y ′; Ỹ , Ỹ ′

∥∥∥
x,x̃,ω,γ

ω
1+γ
p (s, t) +

∥∥∥Y ′
s − Ỹ ′

s

∥∥∥ω 1
p (s, t) +

∥∥∥Ỹ ′
s

∥∥∥∥∥x1
s,t − x̃1

s,t

∥∥
≤
(
2ω

γ
p (0, T )

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

+
∥∥∥Y ′

0 − Ỹ ′
0

∥∥∥+ ∥∥∥Ỹ ′
s

∥∥∥ dω(x, x̃))ω 1
p (s, t).

(12)

We can now prove:

Theorem 2.33 (Stability of rough integration):
Let p, γ, (Y, Y ′), (Ỹ , Ỹ ′),x, x̃ be as above. Let (Y, Y ′), (Ỹ , Ỹ ′) be uniformly bounded in the sense
that ∣∣Y ′

0

∣∣+ ∥∥(Y, Y ′)
∥∥
Dγ

ω,x
≤M,

∣∣∣Ỹ ′
0

∣∣∣+ ∥∥∥(Ỹ , Ỹ ′)
∥∥∥
Dγ

ω,x

≤M.

Let

(z, z′) :=

(∫ ·

0
Y dxt, Y

)
∈ Dγ

ω,x(Rm)

and (z̃, z̃′) analogously. Then it holds

∥∥z, z′; z̃, z̃′∥∥
x,x̃,ω,γ

≤ C
(
dω(x, x̃) +

∣∣∣Y0 − Ỹ0∣∣∣+ ∥∥∥Y ′
0 − Ỹ ′

0

∥∥∥+ ω
γ
p (0, T )

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

)
for some C = C(M,p, ω, γ).

Proof. To prove the statement, we need to find suitable bounds on
∣∣z′s,t − z̃′s,t

∣∣ and
∣∣Rz

s,t −Rz̃
s,t

∣∣,
where

Rz
s,t := zs,t − z′sx

1
s,t =

∫ t

s
Y dx− Ysx1

s,t = (IΞ)s,t − Ξs,t + Y ′
sx

2
s,t.

Here Ξs,t := Ysx
1
s,t + Y ′

sx
2
s,t and I is the map constructed in the sewing lemma (Lemma 2.11).

For ∆s,t := Ξs,t − Ξ̃s,t, we have∣∣Rz
s,t −Rz̃

s,t

∣∣ ≤ |(I∆)s,t −∆s,t|+
∣∣∣Y ′

sx
2
s,t − Ỹ ′

s x̃
2
s,t

∣∣∣ ≤ C∆ω
2+γ
p (s, t) +

∣∣∣Y ′
sx

2
s,t − Ỹ ′

s x̃
2
s,t

∣∣∣ ,
where

C∆ = 2
2+γ
p

+1
ζ

(
2 + γ

p

)
sup

s<u<t

∣∣∣RỸ
s,ux̃

1
u,t −RY

s,ux
1
u,t + Ỹ ′

s,ux̃
2
u,t − Y ′

s,ux
2
u,t

∣∣∣
ω

2+γ
p (s, t)

.

23



Using∣∣∣RỸ
s,ux̃

1
u,t −RY

s,ux
1
u,t + Ỹ ′

s,ux̃
2
u,t − Y ′

s,ux
2
u,t

∣∣∣ ≤ ∣∣∣RỸ
s,u(x̃

1
u,t − x1

u,t)
∣∣∣+ ∣∣∣(RỸ

s,u −RY
s,u)x

1
u,t

∣∣∣
+
∣∣∣Ỹ ′

s,u(x̃
2
u,t − x2

u,t)
∣∣∣+ ∣∣∣(Ỹ ′

s,u − Y ′
s,u)x

2
u,t

∣∣∣
≤
∥∥∥(Ỹ , Ỹ ′)

∥∥∥
Dγ

ω,x̃︸ ︷︷ ︸
≤M

ω
1+γ
p (s, u)dω(x, x̃)ω

1
p (u, t)

+
∥∥∥Y, Y ′; Ỹ , Ỹ ′

∥∥∥
x,x̃,ω

ω
1+γ
p (s, u)ω

1
p (u, t)

+
∥∥∥(Ỹ , Ỹ ′)

∥∥∥
Dγ

ω,x̃︸ ︷︷ ︸
≤M

ω
γ
p (s, u) d2ω(x, x̃)︸ ︷︷ ︸

≤2dω(x,x̃)

ω
2
p (u, t)

+
∥∥∥Y, Y ′; Ỹ , Ỹ ′

∥∥∥
x,x̃,ω

ω
γ
p (s, u)ω

2
p (u, t)

and ∣∣∣Y ′
sx

2
s,t − Ỹ ′

s x̃
2
s,t

∣∣∣ ≤ ∣∣∣(Y ′
s − Ỹ ′

s )x
2
s,t

∣∣∣+ ∣∣∣Ỹ ′
s (x

2
s,t − x̃2

s,t)
∣∣∣

≤
(∥∥∥Y, Y ′; Ỹ , Ỹ ′

∥∥∥
x,x̃,ω

ω
γ
p (0, T ) +

∥∥∥Y ′
0 − Ỹ ′

0

∥∥∥)ω 2
p (s, t)

+

(∥∥∥Ỹ ′
0

∥∥∥︸ ︷︷ ︸
≤M

+ω
γ
p (0, T )

∥∥∥(Ỹ , Ỹ ′)
∥∥∥
Dγ

ω,x̃︸ ︷︷ ︸
≤M

)
d2ω(x, x̃)︸ ︷︷ ︸
≤2dω(x,x̃)

ω
2
p (s, t)

shows the estimate on the
∣∣Rz

s,t −Rz̃
s,t

∣∣ part. For the other part, we simply notice z′s,t − z̃′s,t =

Ys,t − Ỹs,t. The assertion then follows from Equation (12) and∥∥∥Ỹ ′
s

∥∥∥ ≤ ∥∥∥Ỹ ′
0

∥∥∥+ ∥∥∥(Ỹ , Ỹ ′)
∥∥∥
Dγ

ω,x̃

ω
γ
p (0, s) ≤

(
1 + ω

γ
p (0, T )

)
M.

Remark 2.34:
Now, to show convergence of the rough integral using Theorem 2.33, we need convergence of the
rough paths x and x̃ in dω(x, x̃). This is a stronger condition than convergence in p-variation.

To see this, consider the smooth (p = 1) paths x : x 7→ x and xα : x 7→

{
0 x ≤ α
x−α
1−α x > α

on [0, 1].

Then

d1−var(x,xα) = Var1,[0,1]

([
x 7→

{
x x ≤ α
α 1−x

1−α x > α

])
= 2α

α→0−−−→ 0,

but

dω(x,xα) ≥
d1−var;[0,α](x,xω)

ω(0, α)
=
α

α
= 1

with ω(s, t) = |t− s|.
However, by slightly lowering the parameter of control γ, convergence in p-variation is enough:
Corollary 2.35:
Let p, γ, (Y, Y ′), (Ỹ , Ỹ ′),x, x̃, z, z̃ be as in Theorem 2.33. Let γ > δ > p − 2 with |γ − δ| ≤ 1.
Then we have∥∥z, z′; z̃, z̃′∥∥

x,x̃,ω,δ
≤ C

(
dγ−δ
p−var(x, x̃) +

∣∣∣Y0 − Ỹ0∣∣∣+ ∥∥∥Y ′
0 − Ỹ ′

0

∥∥∥+ ω
γ
p (0, T )

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

)
for some C = C(M,p, ω, γ, δ).
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Proof. The proof is essentially the same as for Theorem 2.33, but instead of estimating∣∣x1
s,t − x̃1

s,t

∣∣ ≤dp−var(x, x̃) ≤ dω(x, x̃)ω
1
p (s, t),∣∣x2

s,t − x̃2
s,t

∣∣ ≤d2p−var(x, x̃) ≤ d2ω(x, x̃)ω
2
p (s, t),

we estimate ∣∣x1
s,t − x̃1

s,t

∣∣ ≤dp−var(x, x̃) ≤ dγ−δ
p−var(x, x̃)d

1−(γ−δ)
ω (x, x̃)ω

1−(γ−δ)
p (s, t)

≤21−(γ−δ)dγ−δ
p−var(x, x̃)ω

1−(γ−δ)
p (s, t)

and ∣∣x2
s,t − x̃2

s,t

∣∣ ≤d2p−var(x, x̃) ≤ d
γ−δ
p−var(x, x̃)d

2−(γ−δ)
ω (x, x̃)ω

2−(γ−δ)
p (s, t)

≤22−(γ−δ)dγ−δ
p−var(x, x̃)ω

2−(γ−δ)
p (s, t).
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3 Rough Differential Equations
After defining the rough integral, we can now lay our focus on rough differential equations. From
here on out, we will only be concerned with the case 2 ≤ p < 3. This section is a generalization
of the RDE-results from [FH20, Chapter 8] to general rough paths and RDEs with drift term.
First, we need to understand what f(Y ) for a controlled rough path Y and f : Rn → L(Rn,Rm)
means.
Let W be a Banach space and let ϕ : Rm →W be a bounded function with bounded, continuous
second derivatives (ϕ ∈ C2

b ). Let (Y, Y ′) ∈ Dγ
ω,x(Rm) be a controlled rough path. Then we can

define

ϕ(Y )t :=ϕ(Yt),

ϕ(Y )′t :=DY ϕ(Yt)Y
′
t .

Here Dϕ(y) is the map

Rm 3 x 7→ Dϕ(y)x := lim
h↘0

ϕ(y + hx)− ϕ(y)
h

∈W,

so ϕ(Y )′t ∈ L(Rn,W ). Now, we want to show that (ϕ(Y ), ϕ(Y )′) is indeed a controlled rough
path.

Lemma 3.1:
Let 2 ≤ p < 3, ϕ ∈ C2

b (Rm,W ) and let (Y, Y ′) ∈ Dγ
ω,x(Rm) be a controlled rough path for some

rough path x ∈ Ωp, a controlling function ω, and γ > p − 2. Let (ϕ(Y ), ϕ(Y )′) be defined as
above. Then (ϕ(Y ), ϕ(Y )′) ∈ Dγ∧1

ω,x (W ) is a controlled rough path. In particular, we have∥∥(ϕ(Y ), ϕ(Y )′)
∥∥
Dγ

ω,x
≤
(
2 ‖Dϕ‖∞ +

∥∥D2ϕ
∥∥
∞
∥∥Y ′∥∥

∞ ω
1
p (0, T )

)∥∥(Y, Y ′)
∥∥
Dγ

ω,x

+ 2
∥∥D2ϕ

∥∥
∞

(∥∥(Y, Y ′)
∥∥2
Dγ

ω,x
ω

2γ
p (0, T ) + 2

∥∥Y ′∥∥2
∞

)
ω

1−γ
p (0, T ).

Proof. Without loss of generality, let γ ≤ 1. We have∥∥ϕ(Y )′t − ϕ(Y )′s
∥∥ =

∥∥Dϕ(Yt)Y ′
t −Dϕ(Yt)Y ′

s +Dϕ(Yt)Y
′
s −Dϕ(Ys)Y ′

s

∥∥
≤‖Dϕ‖∞

∥∥Y ′
t − Y ′

s

∥∥+ ‖Dϕ(Yt)−Dϕ(Ys)‖∥∥Y ′∥∥
∞

≤‖Dϕ‖∞
∥∥(Y, Y ′)

∥∥
Dγ

ω,x
ω

γ
p (s, t) +

∥∥D2ϕ
∥∥
∞
∥∥Y ′∥∥

∞ |Yt − Ys|

≤
∥∥(Y, Y ′)

∥∥
Dγ

ω,x

(
‖Dϕ‖∞ +

∥∥D2ϕ
∥∥
∞
∥∥Y ′∥∥

∞ ω
1
p (0, T )

)
ω

γ
p (s, t)

+
∥∥D2ϕ

∥∥
∞
∥∥Y ′∥∥2

∞ ω
1
p (s, t),

where we used the first inequality of Equation (10). For

Rϕ
s,t := ϕ(Yt)− ϕ(Ys)−Dϕ(Ys)Y ′

sx
1
s,t = ϕ(Yt)− ϕ(Ys)−Dϕ(Ys) Ys,t︸︷︷︸

=Yt−Ys

+Dϕ(Ys)R
Y
s,t

we can use the Taylor formula, to see∥∥Rϕ
s,t

∥∥ ≤1

2

∥∥D2ϕ
∥∥
∞ |Yt − Ys|

2 + ‖Dϕ‖∞
∥∥RY

s,t

∥∥
≤2
∥∥D2ϕ

∥∥
∞

(∥∥(Y, Y ′)
∥∥2
Dγ

ω,x
ω

2γ
p (s, t) +

∥∥Y ′∥∥2
∞

)
ω

2
p (s, t)

+ ‖Dϕ‖∞
∥∥(Y, Y ′)

∥∥
Dγ

ω,x
ω

1+γ
p (s, t)

with (|a|+|b|)2 ≤ (2max(|a| , |b|))2 = 4max(|a|2 , |b|2) ≤ 4(|a|2+|b|2). Therefore (ϕ(Y ), ϕ(Y )′) ∈
Dγ

ω,x(W ) with the aforementioned bound.
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Using this, we can define rough differential equations:

Definition 3.2 (RDEs):
Let f : Rm → L(Rn,Rm). A Rough Differential Equation (RDE) is an equation of the form

dYt = µ(Yt, t)dt+ f(Yt, t)dxt, (13)

where xt ∈ Ωp(Rn) is the driving rough path. A controlled rough path Y ∈ Dγ
ω,x(Rm) with

γ > p− 2 and Y ′ = f(Y ) is called a solution to Equation (13), started at ξ ∈ Rm, given

Yt = ξ +

∫ t

0
µ(Yτ , τ)dτ +

∫ t

0
f(Yτ , τ)dxτ .

The integral is the one we defined in Theorem 2.29 for the controlled rough path (f(Y ), f(Y )′) ∈
Dγ

ω,x(L(Rn,Rm)).

3.1 RDEs without Drift

As usual, one is interested in the existence and uniqueness of solutions to Equation (13). In the
case of rough paths, this is done using Picard iteration. First, we only consider the case of no
drift (µ = 0), based on [FH20, Theorem 8.3].

Theorem 3.3:
Let 2 ≤ p < 3, ξ ∈ Rm, f ∈ C3(Rm,L(Rn,Rm)) and a rough path x ∈ Ωp(Rn). Then there exists
a time 0 < T0 ≤ T and a unique element (Y, Y ′) ∈ D1

x(Rm) with Y ′ = f(Y ), such that

Yt = ξ +

∫ t

0
f(Yτ )dxτ

for all 0 ≤ t ≤ T0. T0 does not dependent on ξ. If we find an element (Ỹ , Ỹ ′) ∈ Dγ
x(Rm) for

1 > γ > p− 2, which is a solution on [0, T0], then it already holds (Y, Y ′) = (Ỹ , Ỹ ′) ∈ D1
x(Rm).

Proof. Let 1 > γ > p− 2 and let (Y, Y ′) ∈ Dγ
x. From Lemma 3.1, we know that

(f(Y ), f(Y )′) := (f(Y ), Df(Y )Y ′) ∈ Dγ
x(Rm).

This allows us to define the map

MT0(Y, Y
′) :=

(
ξ +

∫ ·∧T0

0
f(Y )dx, f(Y )·∧T0

)
∈ Dγ

x(Rm).

The solution to Equation (13) is a fixed point of this map, which a priori only is in Dγ
x. This

solution then already lies in D1
x:

From Equation (11), we see that∥∥∥∥∫ t

s
f(Yτ )dxτ − f(Ys)x1

s,t

∥∥∥∥ ≤ C ∥∥(Y, Y ′)
∥∥
Dγ

ω,x
Var2p,[s,t](x)

and from Equation (10), we see that

‖f(Yt)− f(Ys)‖ ≤ ‖Df‖∞ ‖Yt − Ys‖ ≤ ‖Df‖∞
(
2
∥∥(Y, Y ′)

∥∥
Dγ

x
Varγp,[0,T ](x) + ‖Y0‖

)
Varp,[s,t](x).

Hence the fixed point is already in D1
x and therefore is the solution we are looking for.

MT0 can be viewed as a map on the space of controlled rough paths started in (ξ, f(ξ)):

Bξ :=
{
(Y, Y ′) ∈ Dγ

x(Rm)
∣∣Y0 = ξ, Y ′

0 = f(ξ)
}
.
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Since Dγ
x is a Banach space, this is complete under the induced norm. Consider the closed unit

ball Dξ centered at

t 7→ c(t) = (ξ + f(ξ)x1
0,t, f(ξ)).

in Bξ. c(t) is an element of Dγ
x, since

ξ + f(ξ)x1
0,t − ξ − f(ξ)x1

0,s − f(ξ)x1
s,t = 0 and

f(ξ)− f(ξ) = 0.

Also, Dξ is the set of all (Y, Y ′) ∈ Dγ
x with Y0 = ξ and Y ′

0 = f(ξ), such that∥∥(Y, Y ′)
∥∥
Dγ

x
= inf

{
C > 0

∣∣∣ ∥∥Yt − Ys − Y ′
sx

1
s,t

∥∥
W
≤ C Varγ+1

p,[s,t](x)
}

+ inf
{
C > 0

∣∣∣ ∥∥Y ′
t − Y ′

s

∥∥
L(Rn,W )

≤ C Varγp,[s,t](x)
}

≤1,

since ‖(Y, Y ′)− c‖Dγ
x
= ‖(Y, Y ′)‖Dγ

x
, as the additional terms always cancel each other out.

Invariance: Now we show that for T0 small enough, MT0 maps Dξ to itself. Obviously ξ +∫ 0
0 f(Y )dx = ξ and f(Y )0 = f(ξ). We have∥∥∥∥∫ t

s
f(Yτ )dxτ − f(Ys)x1

s,t

∥∥∥∥ ≤C ∥∥(Y, Y ′)
∥∥
Dγ

ω,x
Var2p,[s,t](x)

=C
∥∥(Y, Y ′)

∥∥
Dγ

ω,x
Var1−γ

p,[s,t](x)Var
1+γ
p,[s,t](x)

and

‖f(Yt)− f(Ys)‖ ≤C
(∥∥(Y, Y ′)

∥∥
Dγ

x
+
∥∥Y ′∥∥

∞

)
Varp,[s,t](x)

=C
(∥∥(Y, Y ′)

∥∥
Dγ

x
+
∥∥Y ′∥∥

∞

)
Var1−γ

p,[s,t](x)Var
γ
p,[s,t](x)

Now since we only consider the process up to time T0, we have∥∥MT0(Y, Y
′)
∥∥
Dγ

x
≤C

∥∥(Y, Y ′)
∥∥
Dγ

ω,x
Var1−γ

p,[s,t](x) + C
(∥∥(Y, Y ′)

∥∥
Dγ

x
+
∥∥Y ′∥∥

∞

)
Var1−γ

p,[s,t](x)

≤C
(
2
∥∥(Y, Y ′)

∥∥
Dγ

x
+
∥∥Y ′∥∥

∞

)
Var1−γ

p,[0,T0]
(x).

Therefore, we can choose T0 > 0 small enough, such that this is smaller than 1. Note that this
choice can be made independent of ξ, since ‖(Y, Y ′)‖Dγ

x
≤ 1 and the constants in Equations (10)

and (11) depend on ‖Y ′‖∞, which we can control using∥∥Y ′
t

∥∥ ≤ ∣∣∣∣ Y ′
0︸︷︷︸

=f(ξ)

∣∣∣∣+ ∥∥(Y, Y ′)
∥∥
Dγ

x
≤ ‖f‖∞ + 1

independent of ξ. Hence MT0 leaves Dξ invariant for small T0 > 0, independent of ξ.
Contraction: If we can show, thatMT0 is contracting in Dξ for small T0 > 0, we know that it
possesses a unique fixed point. For this, we consider (Y, Y ′), (Ỹ , Ỹ ′) ∈ Dξ and set

∆t :=f(Yt)− f(Ỹt),
∆′

t :=f(Yt)
′ − f(Ỹt)′ = DY f(Yt)Y

′
t −DY f(Ỹt)Ỹ

′
t .

Then it holds ∥∥∥MT0(Y, Y
′);MT0(Ỹ , Ỹ

′)
∥∥∥
x,x,Varpp,γ

=

∥∥∥∥∫ ·∧T0

0
∆τdxτ ,∆·∧T0

∥∥∥∥
Dγ

x

,
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and by Equation (11)∣∣∣∣∫ t

s
∆τdxτ −∆′

sx
1
s,t

∣∣∣∣ ≤ C (∥∥(∆,∆′)
∥∥
Dγ

x
Varγp,[0,T ](x) +

∥∥∆′∥∥
∞

)
Var2p,[s,t](x),

as well as ∥∥∆′∥∥
∞ ≤

∥∥∆′
0

∥∥︸ ︷︷ ︸
=0

+
∥∥(∆,∆′)

∥∥
Dγ

x
Varγp,[0,T ](x).

We know from Equation (10), that

|∆t −∆s| ≤
(
2
∥∥(∆,∆′)

∥∥
Dγ

x
Varγp,[0,T ](x) + ‖∆0‖︸ ︷︷ ︸

=0

)
Varp,[s,t](x)

≤2Varγp,[0,T ](x)
∥∥(∆,∆′)

∥∥
Dγ

x
Var1−γ

p,[s,t](x)Var
γ
p,[s,t](x).

If we can show that ‖(∆,∆′)‖Dγ
x
≤ C

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,Varpp,γ

, we see that

∥∥∥MT0(Y, Y
′);MT0(Ỹ , Ỹ

′)
∥∥∥
x,x,Varpp,γ

≤
(∥∥(∆,∆′)

∥∥
Dγ

x
Varγp,[0,T ](x) +

∥∥∆′∥∥
∞

)
Var1−γ

p,[s,t](x)

+ 2Varγp,[0,T ](x)
∥∥(∆,∆′)

∥∥
Dγ

x
Var1−γ

p,[s,t](x)

≤Cx,γ

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,Varpp,γ

Var1−γ
p,[0,T0]

(x).

Then, we can choose T0 > 0 small enough, such that∥∥∥MT0(Y, Y
′);MT0(Ỹ , Ỹ

′)
∥∥∥
x,x,Varpp,γ

≤ 1

2

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,Varpp,γ

independent of ξ. To show the assertion ‖(∆,∆′)‖Dγ
x
≤ C

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,Varpp,γ

, we construct

∆s = GsHs

with

Hs =Ys − Ỹs ∈ Rm,

H ′
s =Y

′
s − Ỹ ′

s ∈ L(Rn,Rm)

and, since f ∈ C3,

g(x, y) =

∫ 1

0
Df(tx+ (1− t)y)dt,

Gs =g(Ys, Ỹs) ∈ L(Rm,Rm),

G′
s =(DY g(Ys, Ỹs))Y

′
s + (DỸ g(Ys, Ỹs))Ỹ

′
s ∈ L(Rn,L(Rm,Rm)).

Then we see

∂

∂t
[t 7→ f(y + t(x− y))] = Df(y + t(x− y))(x− y),

so indeed

GsHs =

∫ 1

0
Df(tYs + (1− t)Ỹs)(Ys − Ỹs)dt = f(Ys)− f(Ỹs) = ∆s.
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Obviously (H,H ′) ∈ Dγ
x and (Gs, G

′
s) ∈ D

γ
x analog to Lemma 3.1. Now we can use Lemma 2.28,

to see that∥∥(∆,∆′)
∥∥
Dγ

x
≤C(‖G0‖+

∥∥G′
0

∥∥+ ∥∥(G,G′)
∥∥
Dγ

x
)(‖H0‖︸ ︷︷ ︸

=0

+
∥∥H ′

0

∥∥︸ ︷︷ ︸
=0

+
∥∥(H,H ′)

∥∥
Dγ

x︸ ︷︷ ︸
=
∥∥∥Y,Y ′;Ỹ ,Ỹ ′

∥∥∥
x,x,Var

p
p,γ

).

Let’s estimate the parts containing G and G′ independently:

‖G0‖ ≤ ‖g‖∞ ≤ ‖Df‖∞ ,

∥∥G′
0

∥∥ ≤ ‖Dg‖∞( ∥∥Y ′
0

∥∥︸ ︷︷ ︸
=‖f(ξ)‖

+
∥∥∥Ỹ ′

0

∥∥∥︸ ︷︷ ︸
=‖f(ξ)‖

)
≤ 2

∥∥D2f
∥∥
∞ ‖f‖∞ ,

and from the proof of Lemma 3.1, we know that∥∥∥(DY g(Yt, Ỹt))Y
′
t − (DY g(Ys, Ỹs))Y

′
s

∥∥∥ ≤ [ ∥∥(Y, Y ′)
∥∥
Dγ

x︸ ︷︷ ︸
≤1

(
‖DY g‖∞︸ ︷︷ ︸
≤‖D2f‖∞

+
∥∥D2

Y g
∥∥
∞︸ ︷︷ ︸

≤‖D3f‖∞

∥∥Y ′∥∥
∞Varp,[0,T ](x)

)

+
∥∥D2g

∥∥
∞︸ ︷︷ ︸

≤‖D3f‖∞

∥∥Y ′∥∥2
∞Var1−γ

p,[0,T ](x)

]
Varγp,[s,t](x),

and analogous for
∥∥∥(DỸ g(Yt, Ỹt))Ỹ

′
t − (DỸ g(Ys, Ỹs))Ỹ

′
s

∥∥∥, as well as

∥∥Rg
s,t

∥∥ ≤1

2

∥∥D2
Y g
∥∥
∞ |Yt − Ys|

2 +
1

2

∥∥∥D2
Ỹ
g
∥∥∥
∞

∣∣∣Ỹt − Ỹs∣∣∣2 + ‖DY g‖∞
∥∥RY

s,t

∥∥+ ∥∥DỸ g
∥∥
∞

∥∥∥RỸ
s,t

∥∥∥
≤1

2

∥∥D3f
∥∥
∞

[(∥∥(Y, Y ′)
∥∥
Dγ

x︸ ︷︷ ︸
≤1

Varγp,[0,T ](x) +
∥∥Y ′∥∥

∞

)2

+

(∥∥∥(Ỹ , Ỹ ′)
∥∥∥
Dγ

x︸ ︷︷ ︸
≤1

Varγp,[0,T ](x) +
∥∥Y ′∥∥

∞

)2]
Var2p,[s,t](x)

+
∥∥D2f

∥∥
∞

(∥∥(Y, Y ′)
∥∥
Dγ

x︸ ︷︷ ︸
≤1

+
∥∥∥(Ỹ , Ỹ ′)

∥∥∥
Dγ

x︸ ︷︷ ︸
≤1

)
Var1+γ

p,[s,t](x),

using the first inequality of Equation (10).
Therefore, there is some C > 0 only depending on γ and x, such that∥∥(∆,∆′)

∥∥
Dγ

x
≤ C

(
1 + ‖f‖C3

b

)4 ∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,Varpp,γ

,

since ∥∥Y ′∥∥
∞ ≤

∥∥Y ′
0

∥∥︸ ︷︷ ︸
=‖f(ξ)‖≤‖f‖∞

+
∥∥(Y, Y ′)

∥∥
Dγ

x︸ ︷︷ ︸
≤1

Varγp,[0,T ](x).

Hence we can find T0 > 0 small enough such that∥∥∥MT0(Y, Y
′);MT0(Ỹ , Ỹ

′)
∥∥∥
x,x,Varpp,γ

≤ 1

2

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,Varpp,γ

.
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Therefore MT0 admits the unique fixed point (Y, Y ′) ∈ Dξ, which is the unique solution to
the RDE on the interval [0, T0]. T0 does not depend on the starting point ξ. By the uniform
continuity of the p-variation (Lemma 2.4), we can also choose T0 such that∥∥∥MT0(Y, Y

′);MT0(Ỹ , Ỹ
′)
∥∥∥
x̃,x̃,Varpp,γ

≤ 1

2

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x̃,x̃,Varpp,γ

,

when considering the path started at a different time: [s 7→ x̃s] = [s 7→ xt+s] for all t > 0.

Now, we can stitch multiple solutions together, to get the full solution:

Corollary 3.4:
Let 2 ≤ p < 3, ξ ∈ Rm, f ∈ C3(Rm,L(Rn,Rm)) and a rough path x ∈ Ωp(Rn). Then there exists
a unique element (Y, Y ′) ∈ D1

x(Rm) with Y ′ = f(Y ), such that

Yt = ξ +

∫ t

0
f(Yτ )dxτ

for all 0 ≤ t ≤ T . If we find an element (Ỹ , Ỹ ′) ∈ Dγ
x(Rm) for 1 > γ > p− 2, which fulfills the

condition above, then it already holds (Y, Y ′) = (Ỹ , Ỹ ′) ∈ D1
x(Rm).

Proof. Let T0 be the size of the interval of the unique solution from Theorem 3.3. Let (Y (0), Y ′(0))
be the unique solution on [0, T0]. Then we can build up the full solution inductively:
Let (Y (k), Y ′(k)) be the unique solution on [0, kT0]. Consider the rough path x

(k)
t := xkT0+t∧T .

Let (Ỹk, Ỹ
′
k) be the unique solution of

Ỹt = Y
(k)
kT0

+

∫ t

0
f(Ỹτ )dx

(k)
τ

from Theorem 3.3 on the interval [0, T0]. Then

(Y
(k+1)
t , Y

′(k+1)
t ) :=

{
(Y

(k)
t , Y

′(k)
t ) t ≤ kT0

((Ỹk)t−kT0 , (Ỹ
′
k)t−kT0) t ≥ kT0

is the unique solution of the problem on the interval [0, (k+1)T0]. Therefore, we have constructed
the unique solution on the whole interval [0, T ] inductively. A solution (Y, Y ′) ∈ Dγ

x is already
in D1

x, since the same holds true for its pieces (Ỹk, Ỹ
′
k).

3.2 RDEs with Drift

We can extend Theorem 3.3 to RDEs of the form

dYt = µ(t, Yt)dt+ f(t, Yt)dxt (14)

for a rough path x ∈ Ωp as follows:

Definition 3.5:
For 2 ≤ p < 3 and a rough path x = 1 + x1 + x2 ∈ Ωp(Rn), define the augmented rough path

x̂ := 1 + x̂1 + x̂2,

where

x̂1
t := (x1

t , t) ∈ Rn+1

and x̂2 is suitable. Ω̂p(Rn) is the set of augmented rough paths.
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Then we can rewrite Equation (14) to be

dŶt = f̂(Ŷt)dx̂t,

with Ŷt = (Yt, t) and f̂(Ŷt) ∈ L(Rn+1,Rm+1):

n+1∑
j=1

αje
(j) 7→ f̂(Ŷt)

n+1∑
j=1

αje
(j)

 := f(Ŷt)

 n∑
j=1

αje
(j)


︸ ︷︷ ︸
∈Rm=̂Rm×{0}⊂Rm+1

+ µ(Ŷt)αn+1︸ ︷︷ ︸
∈Rm=̂Rm×{0}⊂Rm+1

+αn+1e
(m+1).

To be able to employ Corollary 3.4, we need f̂ ∈ C3, which means µ ∈ C3. It can be shown,
that µ continuous in t and Lipschitz in Yt suffices, by considering the following:

Theorem 3.6:
Let 2 ≤ p < 3, ξ ∈ Rm, f ∈ C3(Rm,L(Rn,Rm)) and a rough path x ∈ Ωp(Rn). Let µ : R×Rm 3
(t, y) 7→ µ(t, y) ∈ Rm be continuous in t and uniformly Lipschitz in y. Let ω be a controlling
function with

ω(s, t) ≥ Varpp,[s,t](x) + |t− s|

for all 0 ≤ s ≤ t ≤ T . Then there exists a unique element (Y, Y ′) ∈ D1
ω,x(Rm) with Y ′ = f(Y ),

such that

Yt = ξ +

∫ t

0
µ(τ, Yτ )dτ +

∫ t

0
f(Yτ )dxτ

for all 0 ≤ t ≤ T . If we find an element (Ỹ , Ỹ ′) ∈ Dγ
ω,x(Rm) for 1 > γ > p − 2, which fulfills

the condition above, then it already holds (Y, Y ′) = (Ỹ , Ỹ ′) ∈ D1
ω,x(Rm).

Proof. We will modify the proof of Theorem 3.3. Let 1 > γ > p − 2. First of all, consider
(Y, Y ′) ∈ Dγ

ω,x. Then also

(f(Y ), f(Y )′) := (f(Y ), Df(Y )Y ′) ∈ Dω,x(Rm).

We now consider

MT0(Y, Y
′) :=

(
ξ +

∫ ·∧T0

0
µ(t, Yt)dt+

∫ ·∧T0

0
f(Yt)dxt, f(Y )·∧T

)
.

Note that the Gubinelli derivative does not change when considering a drift term, as the inte-
gration against time is smooth enough on its own. This is in Dγ

ω,x(Rm), since(
ξ +

∫ ·∧T0

0
f(Yt)dxt, f(Y )·∧T0

)
∈ Dγ

ω,x(Rm)

by Theorem 2.29 and∣∣∣∣∫ t

s
µ(τ, Yτ )dτ

∣∣∣∣ ≤ |t− s| ‖µ(·, Y·)‖∞
≤ |t− s| (‖µ(·, Y·)− µ(·, 0)‖∞ + ‖µ(·, 0)‖∞)

≤ |t− s| (Lµ-Lip ‖Yt‖∞ + ‖µ(·, 0)‖∞)

≤
(
(1 + Lµ-Lip)

(
‖Y0‖+ 2

∥∥Y, Y ′∥∥
Dγ

ω,x
ω

1
p (0, T )

)
+ ‖µ(·, 0)‖∞

)
|t− s|

≤
(
(1 + Lµ-Lip)

(
‖Y0‖+ 2

∥∥Y, Y ′∥∥
Dγ

ω,x
ω

1
p (0, T )

)
+ ‖µ(·, 0)‖∞

)
ω(s, t)
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using Equation (10). Again, a solution in Dγ
ω,x for 1 ≥ γ > p − 2 is also in D1

ω,x, by the same
calculation as before (in Theorem 3.3). This time we consider

Bξ :=
{
(Y, Y ′) ∈ Dγ

ω,x

∣∣Y0 = ξ, Y ′
0 = f(ξ)

}
and the ball Dξ centered in t 7→ c(t) =

(
ξ + f(ξ)x1

0,t, f(ξ)
)
.

For the invariance step, we gain the additional term∣∣∣∣∫ t

s
µ(τ, Yτ )dτ

∣∣∣∣ ≤ Cµ,Y0,‖Y,Y ′‖Dγ
ω,x

,γω(s, t) ≤ Cµ,Y0,‖Y,Y ′‖Dγ
ω,x

,γω
1− 1+γ

p (0, T0)ω
1+γ
p (s, t)

from the triangle inequality. This can be made arbitrarily small for (Y, Y ′) ∈ Dξ by choosing
T0 > 0 small enough.
In the contraction step, we again have the additional term∣∣∣∣ ∫ t

s
µ(τ, Yτ )− µ(τ, Ỹτ )dτ

∣∣∣∣ ≤ |t− s|Lµ-Lip

∥∥∥Yτ − Ỹτ∥∥∥
∞

≤Lµ-Lip

(
2
∥∥∥Y0 − Ỹ0∥∥∥

∞︸ ︷︷ ︸
=0

+ 2
∥∥∥Y − Ỹ , Y ′ − Ỹ ′

∥∥∥
Dγ

ω,x

ω
γ
p (0, T )

)
ω

1
p (s, t) |t− s|

≤Cω,γ,pLµ-Lip

∥∥∥Y − Ỹ , Y ′ − Ỹ ′
∥∥∥
Dγ

ω,x

ω
γ+p
p (s, t).

The rest of the proof is the same as in Theorem 3.3. The extension to the full interval follows
analogous to Corollary 3.4.

Remark 3.7:
The solution constructed in this way (Theorem 3.6) then is different to a solution of the RDE

dŶt = f̂(Ŷt)dx̂t

from above in the sense of Theorem 3.3 and Corollary 3.4, since in that case we would have
Ŷ ′
t = f̂(Ŷt) 6= f(Yt).

3.3 Bounds on RDE Solutions

To prove the main result, later on, we also need the following lemma. This will allow us to find
uniform bounds on a set of RDE solutions. The proof is lengthy and complicated, but we didn’t
want to omit it for the sake of completeness.

Theorem 3.8:
Let µ : [0, T ] × Rm → Rm be continuous in the first and uniformly Lipschitz in the second
component, let f ∈ C3

b (Rm,L(Rn,Rm)), and let x be a p-rough path dominated by the controlling
function ω with ω(s, t) ≥ |t− s|. Let Y be the unique solution to the RDE

dY = µ(t, Yt)dt+ f(Yt)dxt.

Then there is a constant C
(
p, ω(0, T ), La−Lip, ‖a(·, 0)‖∞ , ‖f‖C3

b

)
<∞, such that

∥∥(Y, Y ′)
∥∥
D1

ω,x
≤ C

(
p, ω(0, T ), La−Lip, ‖a(·, 0)‖∞ , ‖f‖C3

b

)
.

Also, the dependencies of C are continuous.
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Something similar was shown in [FH20, Proposition 8.2], which only considered α-Hölder paths
and, more crucially, only works for RDEs without a drift term, which is why our proof has to
take an additional detour to first show the boundedness of |Ys|, which is a term present in an
estimate of the drift part.

Proof. Let Y be the unique solution of the RDE above. Recall that Y ′
t = f(Yt). We then can

consider∣∣RY
s,t

∣∣ = ∣∣Ys,t − f(Ys)x1
s,t

∣∣
≤
∣∣∣∣∫ t

s
f(Y )dx− f(Ys)x1

s,t −Df(Ys)f(Ys)x2
s,t

∣∣∣∣+ ∣∣Df(Ys)f(Ys)x2
s,t

∣∣+ ∣∣∣∣∫ t

s
a(t, Yt)dt

∣∣∣∣
≤2

3
p
+1
ζ

(
3

p

)∥∥(f(Y ), f(Y )′)
∥∥
D1

ω,x
ω

3
p (s, t) + ‖Df‖∞ ‖f‖∞ ω

2
p (s, t)

+
[
(1 + La−Lip)

(
‖Ys‖+ 2

∥∥(Y, Y ′)
∥∥
D1

ω,x
ω

1
p (0, T )

)
+ ‖a(t, 0)‖∞

]
ω(s, t)

≤2
3
p
+1
ζ

(
3

p

)[
C3.1;1

(
‖f‖C3

b
,
∥∥Y ′∥∥

∞ , ω(0, T ), p
)∥∥(Y, Y ′)

∥∥
D1

ω,x

+ C3.1;2

(
‖f‖C3

b

)∥∥(Y, Y ′)
∥∥2
D1

ω,x
ω

2
p (s, t)

+ C3.1;3(‖f‖C3
b
,
∥∥Y ′∥∥

∞)

]
ω

3
p (s, t) + ‖Df‖∞ ‖f‖∞ ω

2
p (s, t)

+ ((1 + La−Lip) ‖Ys‖+ ‖a(t, 0)‖∞)ω(s, t)

+ 2(1 + La−Lip)ω
1
p (0, T )

∥∥(Y, Y ′)
∥∥
D1

ω,x
ω(s, t).

For the second inequality, we used the Maximal inequality as well as an inequality we used in the
proof of Theorem 3.6, while for the third inequality, we used Lemma 3.1 on ‖(f(Y ), f(Y )′)‖D1

ω,x
.

The constants C3.1;1

(
‖f‖C3

b
, ‖Y ′‖∞ , ω(0, T ), p

)
, C3.1;2

(
‖f‖C3

b

)
, and C3.1;3(‖f‖C3

b
, ‖Y ′‖∞) are

taken from Lemma 3.1 and are each continuous in the values they depend on. We additionally
note, that each of the inequalities only depends on the values (Y, Y ′) in the interval [s, t], as well
as ‖Y ′‖∞, which is bounded by ‖f‖∞. In particular, we only need local estimates in [s, t] when
considering ‖(Y, Y ′)‖D1

ω,x
. This lets us use the notation ‖(Y, Y ′)‖D1

ω,x;[s,t]
, which is defined in the

same way as ‖(Y, Y ′)‖D1
ω,x

but restricted to the time period [s, t]. The simple estimate∣∣Y ′
t − Y ′

s

∣∣ = |f(Yt)− f(Ys)| ≤ ‖Df‖∞ |Yt − Ys| ≤ ‖Df‖∞ ∣∣RY
s,t

∣∣+ ‖Df‖∞ ‖f‖∞ ω
1
p (s, t)

then gives us∥∥(Y, Y ′)
∥∥
D1

ω,x;[s,t]
≤C1

(
p, ‖f‖C3

b
,
∥∥Y ′∥∥

∞ , ω(0, T )
)∥∥(Y, Y ′)

∥∥
D1

ω,x;[s,t]
ω

1
p (s, t)

+ C2

(
‖f‖C3

b
, p, ω(0, T )

)∥∥(Y, Y ′)
∥∥2
D1

ω,x;[s,t]
ω(s, t)

+ C3(La−Lip, p, ω(0, T )) ‖Ys‖ω1− 2
p (s, t)

+ C4

(
La−Lip, p, ω(0, T ), ‖f‖C3

b

)∥∥(Y, Y ′)
∥∥
D1

ω,x;[s,t]
ω
1− 2

p (s, t)

+ C5

(
p, ‖f‖C3

b
,
∥∥Y ′∥∥

∞ , ω(0, T ), ‖a(t, 0)‖∞
)
,

where we combined all expressions in terms we do not need explicitly into the constants C1, ..., C5,
each with their continuous dependencies, which we will not write down explicitly from here on
out, to make the notation clearer. We will now only consider special time ranges [s, t]. For this,
we set

ωmax(|Ys|) := min

(
1,

(
1

3C1

)p

,

(
1

3C4

) p
p−2

,
1

45C2(C3 |Ys|ω1− 2
p (0, T ) + C5)

)
.
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Note that ωmax(|Ys|) depends on p, ‖f‖C3
b
, ‖Y ′‖∞ , La−Lip, ω(0, T ), ‖a(t, 0)‖∞ , and |Ys| and that

this dependence is continuous. We suppress the dependence on terms other then |Ys| in our
notation.
Now, let s < t such that ω(s, t) ≤ ωmax(|Ys|). Then we have∥∥(Y, Y ′)

∥∥
D1

ω,x;[s,t]
≤3C2

∥∥(Y, Y ′)
∥∥2
D1

ω,x;[s,t]
ω(s, t) + 3C3 |Ys|ω1− 2

p (s, t) + 3C5.

To get rid of the ‖(Y, Y ′)‖2D1
ω,x;[s,t]

term, we show that with our choice of ωmax(|Ys|) we actually
already guarantee 3C2 ‖(Y, Y ′)‖D1

ω,x;[s,t]
ω(s, t) < 1

2 : Define

ψs,t :=3C2

∥∥(Y, Y ′)
∥∥
D1

ω,x;[s,t]
ω(s, t),

λs,t :=9C2

(
C3 |Ys|ω1− 2

p (s, t) + C5

)
ω(s, t).

Multiplying the inequality from above by 3C2ω(s, t) gives

ψs,t ≤ ψ2
s,t + λs,t ⇔ 0 ≤ ψ2

s,t − ψs,t + λs,t.

By our choice of ωmax(|Ys|), we have λs,t ≤ 1
5 and therefore by the p-q-formula one of the

following two hold:

ψs,t ≤
1

2
−
√

1

4
− λs,t ≤

1

2
−
√

1

20
<

1

2
, or

ψs,t ≥
1

2
+

√
1

4
− λs,t ≥

1

2
+

√
1

20
.

Since for t ↘ s, we have ψs,t → 0 < 1
2 , we have to be in the first case for |t− s| small enough,

and since ψs,t is continuous in s and t, we cannot jump from the first to the second case. This
means we have to be in the first case for all s < t, such that ω(s, t) ≤ ωmax(|Ys|). In particular
ψs,t ≤ 1

2 , which implies

ψs,t ≤ 2λs,t,

i.e. ∥∥(Y, Y ′)
∥∥
D1

ω,x;[s,t]
≤ 6(C3 |Ys|ω1− 2

p (s, t) + C5).

This is the result for small enough ω(s, t).
To generalize this, we first show that |Ys| is bounded: Consider again

ωmax(|Ys|) = min

(
1,

(
1

3C1

)p

,

(
1

3C4

) p
p−2

,
1

45(C2 |Ys|ω1− 2
p (0, T ) + C5)

)
.

Then (after possibly making C5 bigger by a term in C1, C4, and p)

ωmax(|Ys|) =
1

45(C2 |Ys|ω1− 2
p (0, T ) + C5)

≤ 1

45C2 |Ys|ω1− 2
p (0, T )

.
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So it holds (for s < t, such that ω(s, t) ≤ ωmax(|Ys|))

|Yt − Ys| ≤
∥∥(Y, Y ′)

∥∥
D1

ω,x;[s,t]
ω

2
p (s, t) + ‖f‖∞ ω

1
p (s, t)

≤6(C3 |Ys|ω1− 2
p (s, t) + C5)ω

2
p (s, t) + ‖f‖∞ ω

1
p (s, t)

≤6C3 |Ys|ωmax(|Ys|) + 6C5ω
2
p
max(|Ys|) + ‖f‖∞ ω

1
p
max(|Ys|)

≤6C3 |Ys|

(
1

45C2 |Ys|ω1− 2
p (0, T )

)
+ 6C5

(
1

45(C2 |Ys|ω1− 2
p (0, T ) + C5)

) 1
p

+ ‖f‖∞

(
1

45(C2 |Ys|ω1− 2
p (0, T ) + C5)

) 2
p

≤ 2C3

15C5ω
1− 2

p (0, T )
+ 6C5

(
1

45C5

) 2
p

+ ‖f‖∞
(

1

45C5

) 1
p

=: C6

by Equation (12). Now, we can show the boundedness of |Ys|. For this set t0 := 0,

tk+1 := max {τ > tk|τ ≤ T and ω(tk, τ) ≤ ωmax(Ytk)} .

The above then implies

|Ytk | ≤
∣∣Ytk−1

∣∣+ C6 ≤ ... ≤ |Y0|+ kC6

We need to show that there is a K ∈ N, such that tK = T . With

K0 =

⌈
|Y0|
C6

+
C5

C2C6ω
1− 1

p

(0, T )

⌉
,

i.e.

C2C6K0ω
1− 1

p (0, T ) ≥ C2 |Y0|ω1− 1
p (0, T ) + C5.

For tk < T , we then have

ω(0, tk) ≥
k∑

j=1

ω(tj−1, tj) =

k−1∑
j=0

ωmax(
∣∣Ytj ∣∣)

=

k−1∑
j=0

1

45(C2(|Y0|+ jC6)ω
1− 2

p (0, T ) + C5)
≥

k−1∑
j=K0

1

45(C2(|Y0|+ jC6)ω
1− 2

p (0, T ) + C5)

≥
k−1∑
j=K0

1

90C2C6ω
1− 1

p (0, T )j
≥ 1

90C2C6ω
1− 1

p (0, T )

k−1∑
j=K0

1

j

k→∞−−−→∞.

Therefore, there is a k ∈ N such that

ω(0, tk) ≥ ω(0, T ).

Since t 7→ ω(0, t) is (strictly) increasing, we have tk = T .
The map ω(0, T ) 7→ k(ω) of course has jumps, but we can find C8 continuous, such that

k(ω) ≤ C8(p, C1, C2, C3, C4, C5, ω(0, T ))

by making it a little larger. Then we have shown

|Ys| ≤ (|Y0|+ C8C6)
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for all s ∈ [0, T ]. This then can be used to set

ωmax := ωmax(|Y0|+ C8C6)

independently of |Ys|. Hence,∥∥(Y, Y ′)
∥∥
D1

ω,x;[s,t]
≤6(C3 |Ys|ω1− 2

p (s, t) + C5)

≤6(C3 (|Y0|+ C8C6)ω
1− 2

p (0, T ) + C5) =: C9

for all s < t, such that ω(s, t) ≤ ωmax.
This lets us come to general s < t with ω(s, t) > ωmax. Then we can again define t0 := s and

tk+1 := max {τ > tk|τ ≤ t and ω(tk, τ) ≤ ωmax}

with tK = T for K =
⌈
ω(s,t)
ωmax

⌉
. It holds

∣∣RY
s,t

∣∣ = ∣∣Ys,t − f(Ys)x1
s,t

∣∣ ≤ K∑
k=1

∣∣∣Ytk−1,tk − f(Ys)x
1
tk−1,tk

∣∣∣
≤

K∑
k=1

∣∣∣RY
tk−1,tk

∣∣∣+ ∣∣∣(f(Ytk−1
)− f(Ys)

)
x1
tk−1,tk

∣∣∣
≤

K∑
k=1

∥∥(Y, Y ′)
∥∥
D1

ω,x;[tk−1,tk]
ω

2
p (tk−1, tk) + 2 ‖f‖∞ ω

1
p (tk−1, tk)

≤
⌈
ω(s, t)

ωmax

⌉(
C9ω

2
p
max + 2 ‖f‖∞ ω

1
p
max

)
≤
(
C9ω

2
p
max + 2 ‖f‖∞ ω

1
p
max

)(
ω(s, t)

ωmax
+ 1

)
≤
(
C9ω

2
p
max + 2 ‖f‖∞ ω

1
p
max

)
2

ωmax
ω(s, t)

and ∣∣Y ′
t − Y ′

s

∣∣ ≤ K∑
k=1

∣∣∣Y ′
tk
− Y ′

tk−1

∣∣∣ = K∑
k=1

∣∣f(Ytk)− f(Ytk−1
)
∣∣ ≤ ‖Df‖∞ K∑

k=1

∣∣Ytk − Ytk−1

∣∣
≤‖Df‖∞

K∑
k=1

∣∣∣RY
tk−1,tk

∣∣∣+ ∣∣∣f(Ytk−1
)x1

tk−1,tk

∣∣∣
≤‖Df‖∞

(
C9ω

2
p
max + ‖f‖∞ ω

1
p
max

)
2

ωmax
ω(s, t)

analogous to the above, for ω(s, t) > ωmax. This finally concludes the proof.

3.4 Stability of RDEs

What is still left to show is the continuous dependence of the solution Y on the control µ. For
this, we need to consider the stability of the composition of controlled rough paths with functions
(see Lemma 3.1). This subsection is again based on [FH20, Theorem 7.6 & Theorem 8.5] First,
we prove the following little lemma:
Lemma 3.9:
Let W, W̃ be Banach spaces and ϕ ∈ C2

b (W, W̃ ). Then there exists a constant C = CM,ϕ,ω,γ,p,
such that for all (Y, Y ′) ∈ Dγ

ω,x(W ) and (Ỹ , Ỹ ′) ∈ Dγ
ω,x̃ with

‖Y0‖ ,
∥∥Y ′

0

∥∥ , ∥∥(Y, Y ′)
∥∥
Dγ

ω,x
,
∥∥∥Ỹ0∥∥∥ ,∥∥∥Ỹ ′

0

∥∥∥ , ∥∥∥(Ỹ , Ỹ ′)
∥∥∥
Dγ

ω,x

≤M,

it holds∥∥∥ϕ(Y )s,t − ϕ(Ỹ )s,t

∥∥∥ ≤ C (∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

+
∥∥∥Y ′

0 − Ỹ ′
0

∥∥∥+ ∥∥∥Y0 − Ỹ0∥∥∥+ dω(x, x̃)

)
ω

1
p (s, t).
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Proof. Similar to the proof of Theorem 3.3, we consider

g(x, y) :=

∫ 1

0
Dϕ(tx+ (1− t)y)dt.

Then

ϕ(x)− ϕ(y) = g(x, y)(x− y)

and

‖g‖∞ ≤ ‖Dϕ‖∞ ,

as well as

‖g(x, y)− g(x̃, ỹ)‖ =
∥∥∥∥∫ 1

0
Dϕ(tx+ (1− t)y)−Dϕ(tx̃+ (1− t)ỹ)dt

∥∥∥∥
≤
∫ 1

0

∥∥D2ϕ
∥∥
∞ (t ‖x− x̃‖+ (1− t) ‖y − ỹ‖) dt

≤1

2

∥∥D2ϕ
∥∥
∞ (‖x− x̃‖+ ‖y − ỹ‖) .

Now we can set ∆t = Yt − Ỹt and see that∥∥∥ϕ(Y )s,t − ϕ(Ỹ )
∥∥∥ =

∥∥∥g(Yt, Ỹt)∆t − g(Ys, Ỹs)∆s

∥∥∥
=
∥∥∥g(Yt, Ỹt)(∆t −∆s) +

(
g(Yt, Ỹt)− g(Ys, Ỹs)

)
∆s

∥∥∥
≤‖g‖∞

∥∥∥Ys,t − Ỹs,t∥∥∥+ 1

2

∥∥D2ϕ
∥∥
∞

(
‖Ys,t‖+

∥∥∥Ỹs,t∥∥∥)∥∥∥Ys − Ỹs∥∥∥ .
By Equations (10) and (12), we then get∥∥∥Ys − Ỹs∥∥∥(‖Ys,t‖+ ∥∥∥Ỹs,t∥∥∥) ≤Cω,γ,p

(∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

+
∥∥∥Y ′

0 − Ỹ ′
0

∥∥∥+ ∥∥∥Y0 − Ỹ0∥∥∥
+
∥∥∥Ỹ ′

0

∥∥∥︸ ︷︷ ︸
≤M

dω(x, x̃)

)
ω

1
p (0, T )

(
2
∥∥(Y, Y ′)

∥∥
Dγ

ω,x︸ ︷︷ ︸
≤M

ω
γ
p (0, T ) + ‖Y0‖︸︷︷︸

≤M

+ 2
∥∥∥(Ỹ , Ỹ ′)

∥∥∥
Dγ

ω,x̃︸ ︷︷ ︸
≤M

ω
γ
p (0, T ) +

∥∥∥Ỹ0∥∥∥︸ ︷︷ ︸
≤M

)
ω

1
p (s, t)

and ∥∥∥Ys,t − Ỹs,t∥∥∥ ≤Cω,γ,ϕ,p

(∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

+
∥∥∥Y ′

0 − Ỹ ′
0

∥∥∥+ ∥∥∥Ỹ ′
s

∥∥∥ dω(x, x̃))ω 1
p (s, t)

by Equation (12). Now,∥∥∥Ỹ ′
s

∥∥∥ ≤ ∥∥∥Ỹ ′
0

∥∥∥+ ∥∥∥(Ỹ , Ỹ ′)
∥∥∥
Dγ

ω,x̃

ω
γ
p (0, 1) ≤

(
1 + ω

γ
p (0, 1)

)
M

gives the assertion.

This directly allows us to prove:
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Lemma 3.10:
Let 3 > p ≥ 2 and 1 ≥ γ > p − 2. Let x, x̃ ∈ Ωp be p-rough paths dominated by the controlling
function ω. Let (Y, Y ′) ∈ Dγ

ω,x and (Ỹ , Ỹ ′) ∈ Dγ
ω,x̃. For ϕ ∈ C3

b let

(Z,Z ′) := (ϕ(Y ), Dϕ(Y )Y ′) ∈ Dγ
ω,x

and similar for (Z̃, Z̃ ′). Then it holds∥∥∥Z,Z ′; Z̃, Z̃ ′
∥∥∥
x,x̃,ω,γ

≤ C
(
dω(x, x̃) +

∣∣∣Y0 − Ỹ0∣∣∣+ ∣∣∣Y ′
0 − Ỹ ′

0

∣∣∣+ ∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

)
for some C = C(M,p, ω, ϕ, γ), where

|Y0| ,
∣∣Y ′

0

∣∣ , ∥∥(Y, Y ′)
∥∥
Dγ

ω,x
,
∣∣∣Ỹ0∣∣∣ , ∣∣∣Ỹ ′

0

∣∣∣ , ∥∥∥(Ỹ , Ỹ ′)
∥∥∥
Dγ

ω,x

≤M.

Proof. To show the result, we need the two estimates for
∥∥∥Z,Z ′; Z̃, Z̃ ′

∥∥∥
x,x̃,ω,γ

as defined in
Section 2.5. We start with∣∣∣Z ′

s,t − Z̃ ′
s,t

∣∣∣ = ∣∣∣(Dϕ(Y )Y ′)s,t − (Dϕ(Ỹ )Ỹ ′)s,t

∣∣∣
=
∣∣∣Dϕ(Yt)Y ′

t −Dϕ(Ys)Y ′
s −

(
Dϕ(Ỹt)Ỹ

′
t −Dϕ(Ỹs)Ỹ ′

s

)∣∣∣
=
∣∣∣Dϕ(Y )s,tY

′
t +Dϕ(Ys)Y

′
s,t −

(
Dϕ(Ỹ )s,tỸ

′
t +Dϕ(Ỹs)Ỹ

′
s,t

)∣∣∣
≤
∣∣∣(Dϕ(Y )s,t −Dϕ(Ỹ )s,t

)
Y ′
t

∣∣∣+ ∣∣∣Dϕ(Ỹ )s,t(Y
′
t − Ỹ ′

t )
∣∣∣

+
∣∣∣(Dϕ(Ys)−Dϕ(Ỹs))Y ′

s,t

∣∣∣+ ∣∣∣Dϕ(Ỹs)(Y ′
s,t − Ỹ ′

s,t

)∣∣∣ .
Now, we can assess each of these terms individually: Using Lemma 3.9 gives∣∣∣(Dϕ(Y )s,t −Dϕ(Ỹ )s,t

)
Y ′
t

∣∣∣ ≤ ∣∣∣Dϕ(Y )s,t −Dϕ(Ỹ )s,t

∣∣∣ ∣∣Y ′
t

∣∣︸︷︷︸
≤CM,γ,ω

≤CM,ϕ,ω,γ,p

(∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

+
∣∣∣Y ′

0 − Ỹ ′
0

∣∣∣
+
∣∣∣Y0 − Ỹ0∣∣∣+ dω(x, x̃)

)
ω

1
p (s, t).

We also have∣∣∣Dϕ(Ỹ )s,t(Y
′
t − Ỹ ′

t )
∣∣∣ ≤ ∣∣∣Dϕ(Ỹ )s,t

∣∣∣ ∣∣∣Y ′
t − Ỹ ′

t

∣∣∣ ≤ ∥∥D2ϕ
∥∥
∞

∣∣∣Ỹt − Ỹs∣∣∣ ∣∣∣Y ′
t − Ỹ ′

t

∣∣∣
≤
∥∥D2ϕ

∥∥
∞

(
2
∥∥∥(Ỹ , Ỹ ′)

∥∥∥
Dγ

ω,x̃︸ ︷︷ ︸
≤M

ω
γ
p (0, T ) +

∣∣∣Ỹ0∣∣∣︸︷︷︸
≤M

)
ω

1
p (s, t)

·
(∣∣∣Y ′

0 − Ỹ ′
0

∣∣∣+ ∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

ω
γ
p (0, T )

)
by Equation (10),∣∣∣(Dϕ(Ys)−Dϕ(Ỹs))Y ′

s,t

∣∣∣ ≤ ∣∣∣Dϕ(Ys)−Dϕ(Ỹs)∣∣∣ ∣∣Y ′
s,t

∣∣ ≤ ∥∥D2ϕ
∥∥
∞

∣∣∣Ys − Ỹs∣∣∣ ∣∣Y ′
s,t

∣∣
≤
∥∥D2ϕ

∥∥
∞Cω,γ,M

(∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

+
∣∣∣Y ′

0 − Ỹ ′
0

∣∣∣+ ∣∣∣Ỹ ′
0

∣∣∣︸︷︷︸
≤M

dω(x, x̃)

)
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by Equation (12), and∣∣∣Dϕ(Ỹs)(Y ′
s,t − Ỹ ′

s,t

)∣∣∣ ≤ ‖Dϕ‖∞ ∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

ω
γ
p (s, t),

which give the estimate on
∣∣∣Z ′

s,t − Z̃ ′
s,t

∣∣∣. For the other term, we write

RZ
s,t = ϕ(Yt)− ϕ(Ys)−Dϕ(Ys)Y ′

sXs,t = ϕ(Yt)− ϕ(Ys)−Dϕ(Ys)Ys,t +Dϕ(Ys)R
Y
s,t

and the same for Z̃, similar to the proof of Lemma 3.1. Therefore∣∣∣RZ
s,t −RZ̃

s,t

∣∣∣ ≤ ∣∣∣ϕ(Yt)− ϕ(Ys)−Dϕ(Ys)Ys,t − (ϕ(Ỹt)− ϕ(Ỹs)−Dϕ(Ỹs)Ỹs,t)∣∣∣︸ ︷︷ ︸
=:|T1|

+
∣∣∣Dϕ(Ys)RY

s,t −Dϕ(Ỹs)RỸ
s,t

∣∣∣︸ ︷︷ ︸
=:|T2|

.

Then, we have

T1 =

∫ 1

0

(
D2ϕ(Ys + θYs,t)(Ys,t ⊗ Ys,t)−D2ϕ(Ỹs + θỸs,t)(Ỹs,t ⊗ Ỹs,t)

)
(1− θ)dθ,

since ∫ 1

0
D2ϕ(Ys + θYs,t)(Ys,t ⊗ Ys,t)(1− θ)dθ =Dϕ(Ys + θYs,t)Ys,t(1− θ)

∣∣∣∣1
0

+

∫ 1

0
Dϕ(Ys + θYs,t)Ys,tdθ

=−Dϕ(Ys)Ys,t + ϕ(Yt)− ϕ(Ys).

We can then use∣∣∣D2ϕ(Ys + θYs,t)−D2ϕ(Ỹs + θỸs,t)
∣∣∣ ≤∥∥D3ϕ

∥∥
∞

(∣∣∣Ys − Ỹs∣∣∣+ ∣∣∣Ys,t − Ỹs,t∣∣∣)
≤Cϕ,γ,p,ω,M

(∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

+
∣∣∣Y0 − Ỹ0∣∣∣

+
∥∥∥Y ′

0 − Ỹ ′
0

∥∥∥+ dω(x, x̃)

)
to see ∣∣∣∣D2ϕ(Ys + θYs,t)(Ys,t ⊗ Ys,t)−D2ϕ(Ỹs + θỸs,t)(Ỹs,t ⊗ Ỹs,t)

∣∣∣∣
≤
∣∣∣D2ϕ(Ys + θYs,t)

(
(Ys,t ⊗ Ys,t)− (Ỹs,t ⊗ Ỹs,t)

)∣∣∣
+
∣∣∣(D2ϕ(Ys + θYs,t)−D2ϕ(Ỹs + θỸs,t)

)
(Ỹs,t ⊗ Ỹs,t)

∣∣∣
≤
∥∥D2ϕ

∥∥
∞

∥∥∥Ys,t ⊗ Ys,t − Ỹs,t ⊗ Ỹs,t∥∥∥ .
+
∥∥D3ϕ

∥∥
∞

(∣∣∣Ys − Ỹs∣∣∣+ ∣∣∣Ys,t − Ỹs,t∣∣∣) ∣∣∣Ỹs,t∣∣∣2
Considering∥∥∥Ys,t ⊗ Ys,t − Ỹs,t ⊗ Ỹs,t∥∥∥ ≤∥∥∥Ys,t ⊗ Ys,t − Ys,t ⊗ Ỹs,t∥∥∥+ ∥∥∥Ys,t ⊗ Ỹs,t − Ỹs,t ⊗ Ỹs,t∥∥∥

≤
∥∥∥Ys,t ⊗ (Ys,t − Ỹs,t)

∥∥∥+ ∥∥∥(Ys,t − Ỹs,t)⊗ Ỹs,t∥∥∥
≤
∣∣∣Ys,t − Ỹs,t∣∣∣ (|Ys,t|+ ∣∣∣Ỹs,t∣∣∣)
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as well as Equations (10) and (12) gives∣∣∣∣D2ϕ(Ys + θYs,t)(Ys,t ⊗ Ys,t)−D2ϕ(Ỹs + θỸs,t)(Ỹs,t ⊗ Ỹs,t)
∣∣∣∣

≤Cϕ,M,ω,γ,p

(∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

+
∣∣∣Y ′

0 − Ỹ ′
0

∣∣∣
+
∣∣∣Y0 − Ỹ0∣∣∣+ dω(x, x̃)

)
ω

2
p (s, t)

and therefore

|T1| ≤ Cϕ,M,ω,γ,p

(∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

+
∣∣∣Y ′

0 − Ỹ ′
0

∣∣∣+ ∣∣∣Y0 − Ỹ0∣∣∣+ dω(x, x̃)

)
ω

2
p (s, t).

For the second term, T2, we have

|T2| =
∣∣∣Dϕ(Ys)RY

s,t −Dϕ(Ỹs)RỸ
s,t

∣∣∣ ≤ ∣∣∣Dϕ(Ys)(RY
s,t −RỸ

s,t)
∣∣∣+ ∣∣∣(Dϕ(Ys)−Dϕ(Ỹs))RỸ

s,t

∣∣∣
≤‖Dϕ‖∞

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

ω
1+γ
p (s, t) +

∥∥D2ϕ
∥∥
∞

∣∣∣Ys − Ỹs∣∣∣ ∥∥∥(Ỹ , Ỹ ′)
∥∥∥
Dγ

ω,x̃︸ ︷︷ ︸
≤M

ω
1+γ
p (s, t)

≤Cϕ,ω,p,γ,M

(∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x̃,ω,γ

+
∥∥∥Y ′

0 − Ỹ ′
0

∥∥∥+ dω(x, x̃)

)
ω

1+γ
p (s, t)

by Equation (12). This concludes the proof.

Now all prerequisites are met so that we can prove our main stability result.

Theorem 3.11 (Stability of RDEs):
Let x ∈ Ωp be a rough path. Let f : Rm → L(Rn,Rm) be C3 and let µ, µ̃ : R ⊗ Rm → Rm be
continuous in the first and uniformly Lipschitz in the second component with the same constant
Lµ−Lip, i.e.

|ν(t, y)− ν(t, ỹ)| ≤ Lµ−Lip ‖y − ỹ‖

for all t ∈ [0, T ], and for both ν ∈ {µ, µ̃}. Define

‖µ, µ̃‖∞;T,M := sup
t∈[0,T ]
‖ζ‖≤M

|µ(t, ζ)− µ̃(t, ζ)| .

Let Y and Ỹ be solutions to

dY = µ(t, Y )dt+ f(Y )dx Y0 = ξ

and

dỸ = µ̃(t, Ỹ )dt+ f(Ỹ )dx Ỹ0 = ξ̃,

respectively, with ‖Y ‖∞ ,
∥∥∥Ỹ ∥∥∥

∞
, |ξ| ,

∣∣∣ξ̃∣∣∣ ≤ M . Similar to Theorem 3.6, we take a controlling
function ω with

ω(s, t) ≥ Varpp,[s,t](x) + |t− s| .

Then there is a constant C = C(M,p, ω, f, γ, Lµ−Lip) with∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,ω,γ

≤ C
(
‖µ, µ̃‖∞;T,M +

∣∣∣ξ − ξ̃∣∣∣) .
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The required bounds on the RDE solutions can for example be obtained from Theorem 3.8.

Proof. As a first step, we consider only some possibly small time interval [0, T0]. Let

(z, z′) :=

(
ξ +

∫ ·

0
µ(t, Yt)dt+

∫ ·

0
f(Yt)dxt, f(Y·)

)
.

Then, we have (Y, f(Y )) = (Y, Y ′) = (z, z′) and analog for Ỹ . Recall the definition of∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,ω,γ

(Section 2.5). It holds

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,ω,γ

=
∥∥z, z′; z̃, z̃′∥∥

x,x,ω,γ
≤
∥∥∥∥∫ ·

0
f(Yt)dxt, f(Y·);

∫ ·

0
f(Ỹt)dxt, f(Y·)

∥∥∥∥
x,x,ω,γ

+

∥∥∥∥∫ ·

0
µ(t, Y )dt, 0;

∫ ·

0
µ̃(t, Ỹt)dt, 0

∥∥∥∥
x,x,ω,γ

.

Let’s consider one term at a time.
By Theorem 2.33 we have∥∥∥∥∫ ·

0
f(Yt)dxt, f(Y·);

∫ ·

0
f(Ỹt)dxt, f(Ỹ·)

∥∥∥∥
x,x,ω,γ

≤C
( ∣∣∣f(ξ)− f(ξ̃)∣∣∣+ ∥∥∥f(ξ)′ − f(ξ̃)′∥∥∥

+ ω
γ
p (0, T1)

∥∥∥f(Y ), f(Y )′; f(Ỹ ), f(Ỹ )′
∥∥∥
x,x,ω,γ

)
with C dependent on M,p, γ and ω. It also holds∣∣∣f(ξ)− f(ξ̃)∣∣∣ ≤ ‖Df‖∞ ∣∣∣ξ − ξ̃∣∣∣
and ∥∥∥f(ξ)′ − f(ξ̃)′∥∥∥ =

∥∥∥Df(ξ)f(ξ)−Df(ξ̃)f(ξ̃)∥∥∥
≤
∥∥∥Df(ξ)f(ξ)−Df(ξ̃)f(ξ)∥∥∥+ ∥∥∥Df(ξ̃)f(ξ)−Df(ξ̃)f(ξ̃)∥∥∥
≤
∥∥D2f

∥∥
∞

∣∣∣ξ − ξ̃∣∣∣ |f(ξ)|︸ ︷︷ ︸
≤‖f‖∞

+ ‖Df‖2∞
∣∣∣ξ − ξ̃∣∣∣

and therefore∥∥∥∥∫ ·

0
f(Yt)dxt, f(Y·);

∫ ·

0
f(Ỹt)dxt, f(Ỹ·)

∥∥∥∥
x,x,ω,γ

≤ C(M,p, ω, f, γ)

( ∣∣∣ξ − ξ̃∣∣∣+ ω
γ
p (0, T1)

∥∥∥f(Y ), f(Y )′; f(Ỹ ), f(Ỹ )′
∥∥∥
x,x,ω,γ

)
.

From Lemma 3.10, we get∥∥∥f(Y ), f(Y )′; f(Ỹ ), f(Ỹ )′
∥∥∥
x,x,ω,γ

≤ C(M,p, ω, γ, f)

( ∣∣∣ξ − ξ̃∣∣∣+ ∥∥∥Y ′
0 − Ỹ ′

0

∥∥∥︸ ︷︷ ︸
=
∣∣∣f(ξ)−f(ξ̃)

∣∣∣
+
∥∥∥Y, Y ′; Ỹ , Ỹ ′

∥∥∥
x,x,ω,γ

)

≤ (1 + ‖Df‖∞)C(M,p, ω, γ, f)

( ∣∣∣ξ − ξ̃∣∣∣+ ∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,ω,γ

)
,
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so overall∥∥∥∥∫ ·

0
f(Yt)dxt, f(Y·);

∫ ·

0
f(Ỹt)dxt, f(Ỹ·)

∥∥∥∥
x,x,ω,γ

≤ C(M,p, ω, γ, f)

( ∣∣∣ξ − ξ̃∣∣∣+ ω
γ
p (0, T1)

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,ω,γ

)
.

For [s, t] ⊂ [0, T0], we have∣∣∣∣∫ t

s
µ(τ, Yτ )dτ −

∫ t

s
µ̃(τ, Ỹτ )dτ

∣∣∣∣
≤ |t− s|︸ ︷︷ ︸

≤ω(s,t)

∥∥∥µ(·, Y·)− µ̃(·, Ỹ·)∥∥∥
∞;[s,t]

≤ ω(s, t)
(
‖µ(·, Y·)− µ̃(·, Y·)‖∞;[s,t] +

∥∥∥µ̃(·, Y·)− µ̃(·, Ỹ·)∥∥∥
∞;[s,t]

)
≤ ω(s, t)

(
‖µ, µ̃‖∞;1,M + Lµ−Lip

(∥∥∥Y0,· − Ỹ0,·∥∥∥
∞;[s,t]

+
∣∣∣ξ − ξ̃∣∣∣)) .

Using Equation (12), we get∥∥∥Y0,· − Ỹ0,·∥∥∥
∞;[s,t]

≤ ω
1
p (s, t)

(
2ω

γ
p (0, T1)

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,ω,γ

+
∣∣∣Y ′

0 − Ỹ ′
0

∣∣∣)
and additionally ∣∣∣Y ′

0 − Ỹ ′
0

∣∣∣ = ∣∣∣f(Y0)− f(Ỹ0)∣∣∣ ≤ ‖Df‖∞ ∣∣∣ξ − ξ̃∣∣∣ .
Therefore∥∥∥∥∫ ·

0
µ(t, Y )dt, 0;

∫ ·

0
µ̃(t, Ỹt)dt, 0

∥∥∥∥
x,x,ω,γ

≤ Cω,f,Lµ−Lip,γ,p

(
‖µ, µ̃‖∞;1,M +

∣∣∣ξ − ξ̃∣∣∣
+ ω

γ
p (0, T1)

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,ω,γ

)
on [0, T1].
Overall we have shown that there exists a C = C(M,p, ω, γ, f, Lµ−Lip), such that∥∥∥Y, Y ′; Ỹ , Ỹ ′

∥∥∥
x,x,ω,γ;[0,T1]

≤ C
(
‖µ, µ̃‖∞;T,M +

∣∣∣ξ − ξ̃∣∣∣+ ω
γ
p (0, T1)

∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,ω,γ

)
.

Since ω is uniformly continuous by the definition of a controlling function (Definition 2.7), there
exists some 0 < T1 ≤ T , such that

ω(0, T1) ≤ inf = ωmax = inf

[(
1

2C

) p
γ

,

(
1

2

) p
γ

,

(
1

2

)p
]
.

Now, if we only consider the interval [0, T1], we get∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,ω,γ;[0,T1]

≤ 2C
(
‖µ, µ̃‖∞;T,M +

∣∣∣ξ − ξ̃∣∣∣) .
To get this estimate to the full interval [0, T ], we just need to iterate it. By Equation (12) we
have ∣∣∣YT1 − ỸT1

∣∣∣ ≤ ∣∣∣Y0,T1 − Ỹ0,T1

∣∣∣+ ∣∣∣ξ − ξ̃∣∣∣
≤C̃

(∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,ω,γ;[0,T1]

+ ‖Df‖∞
∣∣∣ξ − ξ̃∣∣∣)+

∣∣∣ξ − ξ̃∣∣∣
≤
(
2CC̃ + 1 + C̃ ‖Df‖∞

)(
‖µ, µ̃‖∞;T,M +

∣∣∣ξ − ξ̃∣∣∣) .
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Now starting the above process at time T1 gives∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,ω,γ;[T1,T2]

≤ 2
(
2CC̃ + 1 + C̃ ‖Df‖∞

)2
︸ ︷︷ ︸

=:C1

(
‖µ, µ̃‖∞;T,M +

∣∣∣ξ − ξ̃∣∣∣)

on the interval [T1, T2] with ω(T1, T2) ≤ ωmax. We can iterate this up to k := dω(0,T )
ωmax

e to get∥∥∥Y, Y ′; Ỹ , Ỹ ′
∥∥∥
x,x,ω,γ;[Tk−1,Tk=T ]

≤ 2k−1
(
2CC̃ + 1 + C̃ ‖Df‖∞

)k
︸ ︷︷ ︸

=:Ck

(
‖µ, µ̃‖∞;T,M +

∣∣∣ξ − ξ̃∣∣∣) .
So overall ∥∥∥Y, Y ′; Ỹ , Ỹ ′

∥∥∥
x,x,ω,γ;[s,t]

≤ max
j=0,...,k−1

Cj

(
‖µ, µ̃‖∞;T,M +

∣∣∣ξ − ξ̃∣∣∣)
for all s < t, such that ω(s, t) ≤ ωmax. The extension to ω(s, t) > ωmax then follows analog to
the (second) extension to [0, T ] in the proof of Theorem 3.8.
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4 The Signature
This section is a collection of statements on the signature, which we will need in Section 5 to
prove the main statement of this thesis and solve an optimal stochastic control problem. While
it is based on [KLA20, Section 2], we have greatly expanded on the proofs.

Definition 4.1 (Signature):
Let 1 ≤ p < 3 and x ∈ Ωp(Rn) be a p-rough path. Then the signature of x is defined to be

X<∞
s,t := 1 +

∫ t

s
dxτ︸ ︷︷ ︸

=:X1
s,t

+

∫
s≤t1≤t2≤t

dxt1 ⊗ dxt2︸ ︷︷ ︸
=:X2

s,t

+... ∈ T∞(Rn).

We defined these integrals in Remark 2.14 and Remark 2.32. The truncated signature (up to
level k) of x is

X≤k
s,t := 1 + X1

s,t + ...+ Xk
s,t ∈ Tk(Rn);

in particular x = X≤bpc.

Remark 4.2:
Using the definition, Remark 2.14 and Remark 2.32, we see that the signature X<∞

s,t = 1+X1
s,t+

X2
s,t + ... of the rough path x ∈ Ωp(Rn) is the unique solution to the RDE

dX<∞
s,· = X<∞

s,· ⊗ dx·

started at X<∞
s,s = 1 ∈ R; or, for the individual tensor levels of the signature

dXk
s,· = Xk−1

s,· ⊗ dx·

started at Xk
s,s = δk,0, where δ is the usual Kronecker delta function.

We can extend the logarithm to the space T∞(Rn), using its series representation

log(1 + x) =

∞∑
k=1

(−1)k+1x
k

k
.

Let 1 + x = 1 + x1 + x2 + ... ∈ T∞(Rn), then its logarithm log : T∞(Rn)→ W∞(Rn) is defined
to be

log(1 + x) :=
∞∑
k=1

(−1)k+1x
⊗k

k
.

There is no issue with convergence here, since for each tensor level, there are only finitely many
summands.
Similarly, we can extend the exponential to W∞(Rn), by setting

x0 + x1 + x2 + ... = x 7→ exp(x) := exp(x0)

∞∑
n=0

(x− x0)⊗n

n!
.

Note that by pulling out the real part x0, there is no problem with convergence of the remaining
power series, since all parts of x− x0 are of tensor level 1 or higher. Therefore, for each tensor
level of the series, there are only finitely many summands.
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Example 4.3 (Expected Signature of Brownian motion):
Let BStrat

t be the Stratonovich version of the Rn-valued Brownian motion rough path from
Remark 2.31 and let B<∞

s,t be its signature. Then

E[B<∞
0,t ] = exp

 t

2

n∑
j=1

e(j) ⊗ e(j)
 .

This result goes back to [Faw03]; see [FH20, Thm. 3.9] for a proof.

Later on, we will make use of a specific property of products of linear maps of the signature of
geometric rough paths. For this, let us introduce shuffling.

Definition 4.4 (Words & Shuffle Product):
Let

Wn := {i1...ik|k ∈ N0 and i` ∈ {1, ..., n} for all ` = 1, ..., k}

be the set of words over the alphabet {1, ..., n}. Let ∅ denote the empty word of length zero.
For i1...ik ∈ Wn, we define a linear functional on W∞(Rn) by

〈i1...ik,X〉 := (Xk)i1,...,ik

for X ∈W∞(Rn), where Xk is the component of X in (Rn)⊗k and we evaluate its e(i1)⊗ ...⊗ e(ik)
entry in basis notation. This definition extends linearly to linear combinations of words. The
length of a word ` = i1...ik ∈ Wn is

|`| := k,

while the length of a linear combination of words is defined to be the length of its longest word.
We can now define the bilinear shuffle product � on linear combinations of words by setting

ui� vj := (ui� v)j + (u� vj)i

for words u, v ∈ Wn and letters i, j ∈ {1, ..., n} and ∅ � u = u � ∅ = u. This also extends
bilinearly to linear combinations of words.

Intuitively, the shuffle product of two words is all the possible ways two piles of cards can be
shuffled by a riffle shuffle. For two words i1...ik, j1...j` ∈ Wn the shuffle product are all the words
made up of exactly the letters i1, ..., ik, j1, ..., j` where i1 comes before i2 and j1 comes before j2
and so on.
Now, for piecewise C∞ functions, we prove the shuffle identity:

Lemma 4.5:
Let x : [0, T ] → Rn be a smooth (piecewise C∞) path. Let X<∞ = 1 + X1 + X2 + ... be the
signature of x, i.e.

Xk
s,t =

∫
s≤t1≤...≤tk≤t

ẋt1 ⊗ ...⊗ ẋtkdt1...dtk

as defined by the usual path integral. Let u, v ∈ Wn be two words. Then we have

〈u,X<∞
s,t 〉〈v,X<∞

s,t 〉 = 〈u� v,X<∞
s,t 〉

for any 0 ≤ s ≤ t ≤ T .
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Proof. We will prove this by induction on the combined length (|u|+ |v|) of the words u and v.
If u = ∅ or v = ∅, the assertion holds, since 〈∅,X<∞

s,t 〉 = 1 (the (Rn)⊗0 = R component of the
signature is 1) and ∅� u = u. Now, let i, j ∈ {1, ..., n} be two letters. Then

〈i,X<∞
s,t 〉〈j,X<∞

s,t 〉 =
∫ t

s
ẋitidti

∫ t

s
ẋjtjdtj =

∫
s≤ti≤t
s≤tj≤t

ẋiti ẋ
j
tj
dtidtj

=

∫
s≤ti≤tj≤t

ẋiti ẋ
j
tj
dtidtj +

∫
s≤tj≤ti≤t

ẋiti ẋ
j
tj
dtidtj

=〈ij,X<∞
s,t 〉+ 〈ji,X<∞

s,t 〉 = 〈i� j,X<∞
s,t 〉.

We have shown the assertion for all u, v of combined length two or less. Now let u, v ∈ Wn be
two words and assume the assertion holds for all words of combined length 1 + |u| + |v|. Let
i, j ∈ {1, ..., n} be two letters. Then we have

〈ui,X<∞
s,t 〉〈vj,X<∞

s,t 〉 =
∫ t

s
〈u,X<∞

s,ti 〉ẋ
i
tidti

∫ t

s
〈v,X<∞

s,tj 〉ẋ
j
tj
dtj

=

∫
s≤ti≤t
s≤tj≤t

〈u,X<∞
s,ti 〉ẋ

i
ti〈v,X

<∞
s,tj 〉ẋ

j
tj
dtidtj

=

∫
s≤ti≤tj≤t

〈u,X<∞
s,ti 〉ẋ

i
tidti〈v,X

<∞
s,tj 〉ẋ

j
tj
dtj

+

∫
s≤tj≤ti≤t

〈v,X<∞
s,tj 〉ẋ

j
tj
dtj〈u,X<∞

s,ti 〉ẋ
i
tidti

=

∫ t

s
〈ui,X<∞

s,tj 〉〈v,X
<∞
s,tj 〉ẋ

j
tj
dtj +

∫ t

s
〈vj,X<∞

s,ti 〉〈u,X
<∞
s,ti 〉ẋ

i
tidti

=

∫ t

s
〈ui� v,X<∞

s,tj 〉ẋ
j
tj
dtj +

∫ t

s
〈u� vj,X<∞

s,ti 〉ẋ
i
tidti

=〈(ui� v)j,X<∞
s,t 〉+ 〈(u� vj)i,X<∞

s,t 〉 = 〈ui� vj,X<∞
s,t 〉.

Now, to be able to apply Lemma 4.5 to geometric rough paths, we still need to show that when
paths converge in p-variation, so do their signatures.

Theorem 4.6:
Let p ≥ 1. Let x ∈ Ωp be a p-rough path and let (xn) ⊂ Ωp be a sequence of p-rough paths, such
that dp−var(x,xn)

n→∞−−−→ 0. Let x and all the xn be dominated by the controlling function ω.
Then ∥∥∥Xk

s,t,Xk−1
s,t ; (Xk

n)s,t, (Xk−1
n )s,t

∥∥∥
x,xn,ω,γ

n→∞−−−→ 0

for every 0 < γ < 1 and k ∈ N. Here Xk and (Xk
n) are the k-th level of the signature of x and

xn respectively.

Proof. We proceed by induction and only consider the case 3 > p ≥ 2. First let k = 1. We have

X1
s,t = x1

s,t =

∫ t

s
1dx

with (1, 0) ∈ D1
ω,x (this is true for every rough path x). By Corollary 2.35, for every 1 > γ > 0,∥∥X1

s,t, 1; (Xn)
1
s,t, 1

∥∥
x,xn,ω,γ

≤ Cd1−γ
p−var(x,xn)

n→∞−−−→ 0.

47



Now, let k ∈ N be arbitrary and let the assertion hold for k − 1. Again by Corollary 2.35, we
have∥∥∥Xk

s,t,Xk−1
s,t ; (Xn)

k
s,t, (Xn)

k−1
s,t

∥∥∥
x,xn,ω,γ

≤ C
(
dδ−γ
p−var(x,xn)

+ ω
γ
p (0, T )

∥∥∥Xk−1
s,t ,X

k−2
s,t ; (Xn)

k−1
s,t , (Xn)

k−2
s,t

∥∥∥
x,xn,ω,δ

)
for every 1 > δ > γ > 0. By assumption, this goes to zero as n→∞.

Corollary 4.7:
Let x ∈ GΩp be a geometric rough path. Then it holds

〈u,X<∞
s,t 〉〈v,X<∞

s,t 〉 = 〈u� v,X<∞
s,t 〉

for every 0 ≤ s ≤ t ≤ 1 and all words u, v ∈ Wn.

Proof. As x is a geometric rough path, there is a sequence (xn) ⊂ Ωp, that converge to x in
p-variation. For these, the shuffle identity holds by Lemma 4.5. Let

ω(s, t) := Varpp,[s,t](x) +

∞∑
n=1

dpp−var;[s,t](x,xn).

After possibly looking at a subsequence of (xn), such that

dp−var(x,xn)
p ≤

(
1

2

)n

for all n ∈ N, ω is a finite controlling function, which dominates both x and xn for every n ∈ N.
By Theorem 4.6 and Equation (12), we have∣∣∣Xk

s,t − (Xn)
k
s,t

∣∣∣ n→∞−−−→ 0

for all k ∈ N. As the map X<∞
s,t 7→ 〈`,X<∞

s,t 〉 for a linear combination of words ` is continuous
and only depends on the truncated signature X≤|`|

s,t up to the length of `, it holds

〈u,X<∞
s,t 〉〈v,X<∞

s,t 〉 = 〈u,X
≤|u|
s,t 〉〈v,X

≤|v|
s,t 〉 = lim

n→∞
〈u, (X≤|u|

n )s,t〉〈v, (X≤|v|
n )s,t〉

= lim
n→∞

〈u, (X<∞
n )s,t〉〈v, (X<∞

n )s,t〉 = lim
n→∞

〈u� v, (X<∞
n )s,t〉

= lim
n→∞

〈u� v, (X≤|u|+|v|
n )s,t〉 = 〈u� v,X≤|u|+|v|

s,t 〉 = 〈u� v,X<∞
s,t 〉,

since the first |u+ v| levels of the signature converge uniformly.

Remark 4.8:
Brownian motion, with the Itô integral to define the first iterated integral, is not a geometric
rough path, since we have

〈1,B<∞
0,t 〉〈1,B<∞

0,t 〉 = B2
t 6= B2

t − t = 2〈11,B<∞
0,t 〉 = 〈1� 1,B<∞

0,t 〉,

where B<∞ is the signature of the rough path 1 +Bt +
∫ t
0 Bτ ⊗ dBτ .

Remark 4.9:
The signature of a geometric rough path is a very important object, since it determines the path
itself up to tree-like extensions [KLA20, Lemma 2.12]. A path x : [0, T ] → Rn is tree-like, if
there exists a function h : [0, T ]→ R+ with h(0) = h(T ) = 0, such that for all 0 ≤ s ≤ t ≤ T

|xt − xs| ≤ h(t) + h(s)− 2 inf
u∈[s,t]

h(u).

In particular x0 = xT . [LCL07, Definition 2.28] This means, that the signature of an augmented
geometric rough path with set starting point is unique [KLA20, Corollary 2.13].
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5 The Optimal Control Problem
We want to find µt, such that the solution Y µ

t to the RDE

dY µ
t = µtb(Y

µ
t )dt+ σ(Y µ

t )dBt (1)

minimizes some expected loss E[L(Y µ)]. In particular, we want b to be Lipschitz, σ to be C3, and
µ to be continuous so that we can use Theorem 3.6 to guarantee the existence and uniqueness
of the solution Y µ (more on that later). We choose our set of functions µ, such that t 7→ µt is a
function of the path up to time t, as well as the time t itself

µt = Θ(B̂|[0,t]),

where B̂t is augmented Brownian motion. Then µt also is adapted.
First, we will develop a way of comparing two paths up to different points in time.

Definition 5.1:
Let p ≥ 1 and t ∈ [0, T ]. Let

Ω̂p
t =

{
x̂ ∈ GΩp

∣∣x is a geometric rough path started at 0 ∈ Rn up to time t
}

be the space of augmented geometric rough paths up to time t, so defined on [0, t]. We can equip
Ω̂p
t with the p-variation distance (see Definition 2.20), which is a norm here, since x̂0 = 0 for all

x̂ ∈ Ω̂p
t .

Let 0 ≤ s < t. We can extend x̂ ∈ Ω̂p
s to Ω̂p

t in the following way. We have x̂1
τ = (x1

τ , τ) for
τ ∈ [0, s], which will be extended to τ ∈ [0, t] by setting

x̃1
τ = (x1

τ∧s, τ)

and adjusting the iterated integrals accordingly, i.e. augmenting the path x1
τ∧s on the interval

[0, t].
This leads us to the following definition:

Definition 5.2 (Stopped Rough Paths):
Let T > 0. Define ΛT :=

⋃
t∈[0,T ] Ω̂

p
t to be the space of stopped rough paths (up to time T ) and

equip it with the metric

d(x̂|[0,t], ŷ|[0,s]) := dp−var;[0,t](x̂, ỹ) + |t− s|

for 0 ≤ s ≤ t ≤ T and x̂ ∈ Ω̂p
t , as well as ŷ ∈ Ω̂p

s.

Remark 5.3:
ΛT is a polish space [Bay+22].

Definition 5.4 (Admissible Controls & Signature Controls):
Let T = C(ΛT ,R) be the space of admissible controls. Additionally, we define the space of
signature controls to be

Tsig :=
{
Θ ∈ T

∣∣∃` a linear combination of words in Wn, such that
Θ(x̂|[0,t]) = 〈`, X̂<∞

0,t 〉 for all x̂ ∈ Ω̂p
T with signature X̂<∞}.

Now the goal is to show that one can optimize over µt ∈ Tsig instead of over µt ∈ T when
considering Equation (1). We show that there are compact sets K ⊂ ΛT , such that Tsig is in a
sense ‘likely dense’ in T . Lemma 5.5 is the main idea we will use to solve the optimal control
problem. It’s taken from [KLA20] and was also used in [Bay+22] to prove a similar result.

49



Lemma 5.5:
Let P be a probability measure on

(
Ω̂p
T ,B(Ω̂

p
T )
)

. Let ε > 0. Then there exists a compact set
K ⊂ Ω̂p

T , such that

(i) P(K) > 1− ε

(ii) Tsig is dense in T , restricted to K. In other words, for every Θ ∈ T there is a sequence
(Θn) ⊂ Tsig, such that

sup
x̂∈K;t∈[0,T ]

∣∣Θ(x̂|[0,t])−Θn(x̂|[0,t])
∣∣ n→∞−−−→ 0.

Proof. Since ΛT is polish (Remark 5.3), so is Ω̂p
T . Since P is a probability measure, i.e. finite,

there is a compact set K ⊂ Ω̂p
T , such that P(K) > 1−ε [Kle06, Lemma 13.5]. Let Θ1,Θ2 ∈ Tsig.

Then there exist linear combinations of words `1, `2, such that

Θi(x̂|[0,t]) = 〈`i, X̂<∞
0,t 〉

for all x̂ ∈ ΛT , t ∈ [0, T ], and i = 1, 2. Let Θ(x̂|[0,t]) := 〈`1 � `2, X̂<∞
0,t 〉. Then Θ ∈ Tsig and we

have

Θ1(x̂|[0,t])Θ2(x̂|[0,t]) = 〈`1, X̂<∞
0,t 〉〈`2, X̂<∞

0,t 〉 = 〈`1 � `2, X̂<∞
0,t 〉 = Θ(x̂|[0,t])

by the shuffle identity (Corollary 4.7). Therefore Tsig forms an algebra. On the other hand, Tsig
separates the points of Ω̂p

T by Remark 4.9. Moreover, Tsig contains the constants, since

〈∅, X̂<∞
0,t 〉 = 1

for each x̂ ∈ Ω̂p
T . Therefore, by the Stone-Weierstrass theorem, Tsig is dense in T , restricted to

the compact set K, with respect to uniform convergence.

Overall, we can now show the following, main result of this thesis:

Theorem 5.6:
Let 2 ≤ p < 3 and let P be a probability measure on

(
Ω̂p
T ,B(Ω̂

p
T )
)

. Let Y µ be the unique solution
to

dY = µtb(Yt)dt+ σ(Yt)dx

started at ξ ∈ Rm, with µ ∈ T , b Lipschitz, and σ ∈ C3
b (Rm,Rm×n). Here, the x is a random

geometric p-rough path with distribution determined by P. It holds

inf
µ∈T

E[L(Y µ)] = inf
µ∈Tsig

E[L(Y µ)]

for a loss function L : C([0, T ],Rm)→ R bounded and α-Hölder for some α > 0.

Note that here, we consider a random geometric p-rough path x̂ (chosen by P). Also the
controlling function ω is random; i.e. we can find a controlling function per path x̂:

ωx̂(s, t) := Varpp,[s,t](x̂) + |t− s|

The solution Y µ of the RDE exists, since with µt : [0, T ] → R continuous and b Lipschitz we
have that

a(t, Y ) := µtb(Y )

is continuous in t and uniformly Lipschitz in Y with Lipschitz-norm La−Lip = ‖µ‖∞;[0,T ] Lb−Lip,
also σ ∈ C3. Therefore we can use Theorem 3.6 to show the existence and uniqueness of the
solution.
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Proof. Let µ ∈ T be fixed and let ε > 0. By Lemma 5.5 there is a compact set Kε ⊂ Ω̂p
T with

probability larger than 1− ε, and we have a sequence (µ(n)) ⊂ Tsig such that

sup
t∈[0,T ]
x̂∈Kε

∣∣∣µ(n)t − µt
∣∣∣ n→∞−−−→ 0

Note that by µt, we actually mean Θ(x̂|[0,t]) and the same fore µ(n). Then we have∣∣∣E [L(Y µ)− L(Y µ(n)
)
]∣∣∣ ≤ ∣∣∣E [(L(Y µ)− L(Y µ(n)

)
)
1Kε

]∣∣∣
+
∣∣∣E [(L(Y µ)− L(Y µ(n)

)
)
(1− 1Kε)

]∣∣∣︸ ︷︷ ︸
≤2‖L‖∞ε

.

By Theorem 3.8, we can find M > 0 large enough, such that

M ≥ max{ωx̂(0, T )|x̂ ∈ Kε}, |ξ| , |σ(ξ)| ,max {‖Y µ‖∞|x̂ ∈ Kε} .

This is possible, since Kε is a compact set and therefore the difference (in p-variation) of rough
paths in Kε is bounded. Also, (t, ξ) 7→ µtb(ξ), µ

(n)
t b(ξ) are both continuous in t and uniformly

Lipschitz with constant L = Lb−Lip(‖µ‖∞ + ε) for n large enough. By Theorem 3.11∥∥∥∥Y µ, (Y µ)′ ;Y µ(n)
,
(
Y µ(n)

)′∥∥∥∥
x,x,ωx̂,γ

≤ Cx̂

∥∥∥µb, µ(n)b∥∥∥
∞;T,M

.

Since the constant Cx̂ in that equation depends continuously on ωx̂(0, T ) and Kε is compact,
we can find C > 0, such that Cx ≤ C <∞ for all x̂ ∈ Kε. We also have∥∥∥µb, µ(n)b∥∥∥

∞;1,M
= sup

t∈[0,T ]
‖ξ‖<M

∣∣∣µtb(ξ)− µ(n)t b(ξ)
∣∣∣ ≤( sup

t∈[0,T ]

∣∣∣µt − µ(n)t

∣∣∣) (
sup

‖ξ‖<M
|b(ξ)|

)
︸ ︷︷ ︸

≤|b(0)|+Lb−LipM=C′

.

Then, by Equation (12)∣∣∣E [(L(Y µ)− L(Y µ(n)
)
)
1Kε

]∣∣∣ ≤E [∣∣∣L(Y µ)− L(Y µ(n)
)
∣∣∣1Kε

]
≤‖L‖α−Höl E

[∥∥∥Y µ − Y µ(n)
∥∥∥α
∞
1Kε

]
≤C ‖L‖α−Höl E

[∥∥∥∥Y µ, (Y µ)′ ;Y µ(n)
,
(
Y µ(n)

)′∥∥∥∥α
x,x,ω,γ

1Kε

]

≤CC ′ ‖L‖α−Höl E

 sup
t∈[0,T ]
x̂∈Kε

∣∣∣µ(n)t − µt
∣∣∣α 1Kε


≤CC ′ ‖L‖α−Höl sup

t∈[0,T ]
x̂∈Kε

∣∣∣µ(n)t − µt
∣∣∣α ,

where the constant again depends continuously on ωx̂(0, T ) and therefore can be chosen uni-
formly on Kε, and∣∣∣E[L(Y µ(n)

)]− E[L(Y µ)]
∣∣∣ ≤ CC ′ ‖L‖α−Höl sup

t∈[0,T ]
x̂∈Kε

∣∣∣µ(n)t − µt
∣∣∣α + 2 ‖L‖∞ ε

n→∞−−−→ 2 ‖L‖∞ ε.

As ε > 0 was arbitrary, this shows the existence of a sequence
(
µ(n)

)
⊂ Tsig, such that

E
[
L(Y µ(n)

)
]

n→∞−−−→ E [L(Y µ)] ,

by a diagonal sequence argument.
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Now, we want to apply Theorem 5.6 to Equation (1), which is an Itô-SDE, but as noted before
in Remark 4.8, the Itô integral does not give us a geometric rough path, but the Stratonovich
integral does (Remark 2.23). However, Lemma 5.5 only works on geometric rough paths, as it
requires the shuffle identity. That is why we need to convert the Itô-SDE from our problem to
a Stratonovich-SDE.

Remark 5.7:
Let σ : Rm → L(Rn,Rm) and let Bt be n-dimensional Brownian motion. Then it holds

dYt = µ(Yt, t)dt+ σ(Yt)dBt

⇒ dYt = µ(Yt, t)dt+ σ(Yt) ◦ dBt −
1

2
c(Yt)dt

with

c(y) = Dσ(y) σ(y).

[KP92, Chapter 4.1]

Using this, we can apply Theorem 5.6 to Equation (1):

Theorem 5.8:
Let 2 ≤ p < 3 and let Bt be standard Brownian motion. Let Y µ be the unique solution to the
Itô SDE

dY = µtb(Yt)dt+ σ(Yt)dBt

started at ξ ∈ Rm, with µ ∈ T , b Lipschitz, and σ ∈ C3
b (Rm,Rm×n). Let L : C([0, T ],Rm)→ R

be a bounded loss function and α-Hölder for some α > 0. Then we have

inf
µ∈T

E[L(Y µ)] = inf
µ∈Tsig

E[L(Y µ)],

where the signature used in Tsig is the Stratonovich version of the Brownian motion signature.

Proof. As σ ∈ C3
b , Dσ ∈ C2

b and therefore our correction term c is Lipschitz. We also have∥∥µb, µ(n)b∥∥∞;T,M
=
∥∥µb+ 1

2c, µ
(n)b+ 1

2c
∥∥
∞;T,M

. Then Theorem 5.6 gives the assertion.

Remark 5.9:
When considering the proof of Theorem 5.6, one notices that we even have

Y µ(n) n→∞−−−→ Y µ

uniformly with probability P(Kε) ≥ 1− ε for an arbitrary ε > 0. That means that we have

L(Y µ(n)
)

n→∞−−−→ L(Y µ)

with probability P(Kε) ≥ 1− ε for any L ∈ C(C([0, T ],Rm),R) in the cases of Theorem 5.6 and
Theorem 5.8.
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6 Numerics
As part of this thesis, a python library for numerical calculations of rough paths, rough integrals
and for the numerical solution of RDEs with 2 ≤ p < 3 was created. This library uses PyTorch
[Pas+19], and is accessible on GitHub2.

6.1 Rough Integrals

We have seen in Theorem 2.29, that the rough integral is the limit of Riemann like sums over
partitions of an interval, when the mesh size goes to zero. This can now be used to approximate
the integral by one of those sums∫ t

s
Yτdxτ ≈

N−1∑
n=0

Ytnx
1
tn,tn+1

+ Y ′
tnx

2
tn,tn+1

,

with tn = s+ n t−s
N . Now for a p-rough path x with 2 ≤ p < 3, a controlled path (Y, Y ′) ∈ Dγ

ω,x

for γ > p− 2, integral bounds s < t, and the number of steps N this yields Algorithm 1.

Algorithm 1 Approximation for Rough Integrals
Input: x: rough path, (Y, Y ′) controlled path, N ≥ 1 number of steps, t > s > 0 integral

bounds
Output: z
z ← 0
∆t← t−s

N
for n← 0, ..., N − 1 do

u← s+ n∆t
∆x1 ← x1

u+∆t − x1
u

∆x2 ← x2
u+∆t − x2

u − x1
u ⊗∆x1

z ← z + Yu∆x1 + Y ′
u∆x2

end for

Lemma 6.1:
For x a p-rough path with 2 ≤ p < 3 and Y ∈ Dγ

ω,x with a controlling function ω and γ > p− 2,
we have ∣∣∣∣∣

∫ t

s
Yτdxτ −

N−1∑
n=0

Ytnx
1
tn,tn+1

+ Y ′
tnx

2
tn,tn+1

∣∣∣∣∣ = O

(
sup

n=0,...,N−1
ω

γ+2
p

−1
(tn, tn+1)

)
.

Proof. In the construction of the integral (Theorem 2.29), we use the sewing lemma (Lemma 2.11)
with α = γ+2

p . Then step 3 of the proof of the sewing lemma gives the assertion.

Therefore Algorithm 1 converges for N →∞ to the real solution, up to floating-point errors.
The approximation scheme from Algorithm 1 can also be adapted to calculate the signature of
a path, the structure of which can be seen in Remark 2.32. We again approximate

Xm
s,t =

∫
s≤τ1≤...≤τm≤t

dxτ1 ⊗ ...⊗ dxτm =

∫ t

s
Xm−1
s,τ ⊗ dxτ

by

Xm
s,t ≈

N−1∑
n=0

Xm−1
s,tn ⊗ x1

tn,tn+1
+ Xm−2

s,tn ⊗ x2
tn,tn+1

.
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Algorithm 2 Milstein scheme for the signature
Input: x: rough path, N ≥ 1: number of steps, t > 0: time, m: maximum level
Output: z

for k ← 0, ...,m do
initialize zlast[k] to be the zero tensor of shape n× ...× n︸ ︷︷ ︸

k times
end for
∆t← t

N
for k ← 0, ..., N − 1 do

u← k∆t
∆x1 ← x1

u+∆t − x1
u

∆x2 ← x2
u+∆t − x2

u − x1
u ⊗∆x1

zcurr[0]← 1
for k ← 1, 2 do

zcurr[k]← xk
u

end for
for k ← 3, ...,m do

zcurr[k]← zlast[k] + zlast[k − 1]⊗∆x1 + zlast[k − 2]⊗∆x2

end for
zlast ← zcurr

end for
z ← zlast

We can use Algorithm 2 to calculate the signature of the p-rough path x at time t > 0 (X≤m
0,t )

up to level m in N steps.
Similar to before, we can calculate the order of convergence:
Lemma 6.2:
For x a p-rough path with 2 ≤ p < 3 and a level m, we have∣∣∣X̂m

0,t − Xm
0,t

∣∣∣ = O

(
sup

n=0,...,N−1
Var3−p

p,[tn,tn+1]
(x)

)
,

where

Xm
0,t =

∫
0≤τ1≤...≤τm≤t

dxτ1 ⊗ ...⊗ dxτm

and X̂m
0,t is the approximation of Algorithm 2.

Proof. Let m ≥ 3, so that we actually approximate the solution, since for m = 0, 1, 2 the solution
is part of the rough path x. Also let Rk

s := X̂k
0,t − Xk

0,t be the approximation error at level m.
Then, for s = tn, t = tn+1 we have

Rk
t −Rk

s =X̂k−1
0,s ⊗ x1

s,t + X̂k−2
0,s ⊗ x2

s,t −
∫ t

s
Xk−1
0,τ ⊗ dxτ

=Rk−1
s ⊗ x1

s,t +Rk−2
s ⊗ x2

s,t + Xk−1
0,s ⊗ x1

s,t + Xk−2
0,s ⊗ x2

s,t −
∫ t

s
Xk−1
0,τ ⊗ dxτ︸ ︷︷ ︸

=O(Var3p,[s,t](x))

and therefore (if Rk−2
s is bounded)

Rk
t −Rk

s −Rk−1
s ⊗ x1

s,t =R
k−2
s ⊗ x2

s,t +O(Var3p,[s,t](x)

≤C
(∥∥∥Rk−2

·

∥∥∥
∞

+Varp,[s,t](x)
)
Var2p,[s,t](x).

2https://github.com/tobna/DeepRoughPaths
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Analogously to above

Rk−1
t −Rk−1

s =Rk−2
s ⊗ x1

s,t +Rk−3
s ⊗ x2

s,t +O(Var3p,[s,t](x))

≤C
(∥∥∥Rk−2

·

∥∥∥
∞

+
∥∥∥Rk−3

·

∥∥∥
∞
Varp,[s,t](x) + Var2p,[s,t](x)

)
Varp,[s,t](x)

and
(
Rk

· , R
k−1
·
)
∈ D1

x with

∥∥∥(Rk
· , R

k−1
·

)∥∥∥
D1

x

≤ C

[∥∥∥Rk−2
·

∥∥∥
∞

+
(∥∥∥Rk−3

·

∥∥∥
∞

+ 1
)

sup
n=0,...,N−1

Varp,[tn,tn+1](x)

]
.

When combining all the estimates from Lemma 2.11 and Theorem 2.29, we get∣∣∣∣∫ t

0
Rk

sdxs

∣∣∣∣ Rk
0=0

≤
(
2

3
p
+1
ζ

(
3

p

)
+ 1

)∥∥∥(Rk
· , R

k−1
· )

∥∥∥
D1

x

Var3p,[0,T ](x).

Now, since X̂k−1
0,t = Xk−1

0,t +Rk−1
t for all k, we have∣∣∣∣Xk+1

0,t −
∫ t

0
X̂k
0,s ⊗ dxs

∣∣∣∣ ≤ ∣∣∣∣∫ t

0
Rk

sdxs

∣∣∣∣
≤C Var3p,[0,T ](x)

[∥∥∥Rk−2
·

∥∥∥
∞

+
(∥∥∥Rk−3

·

∥∥∥
∞

+ 1
)

sup
n=0,...,N−1

Varp,[tn,tn+1](x)

]

and ∣∣∣∣X̂k+1
0,t −

∫ t

0
X̂k
0,s ⊗ dxs

∣∣∣∣ = O

(
sup

n=0,...,N−1
Var3−p

p,[tn,tn+1]
(x)

)

by Lemma 6.1. Therefore

∣∣∣Rk+1
t

∣∣∣ = ∣∣∣Xk+1
0,t − X̂k+1

0,t

∣∣∣ ≤ O( sup
n=0,...,N−1

Var3−p
p,[tn,tn+1]

(x)

)

+ C Var3p,[0,T ](x)

[∥∥∥Rk−2
·

∥∥∥
∞

+
(∥∥∥Rk−3

·

∥∥∥
∞

+ 1
)

sup
n=0,...,N−1

Varp,[tn,tn+1](x)

]

Since we know Xk
0,t exactly for k = 0, 1, 2 and therefore Rk

s = 0 for these k, and 3 − p < 1, we
have

‖Rm
· ‖∞ = O

(
sup

n=0,...,N−1
Var3−p

p,[tn,tn+1]
(x)

)

by induction.

Therefore, Algorithm 2 converges to the desired value.

6.2 RDEs

We will take a finite differences approach for approximating the solution of a rough differential
equation, while additionally including the second-order information rough paths provide. This
is a generalization of the Milstein scheme for SDEs with Brownian motion as the driving path.
For a rough differential equation

dY = µ(Y, t)dt+ f(Y )dx (15)
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we consider its integrated form

Yt = Ys +

∫ t

s
µ(Yτ , τ)dτ +

∫ t

s
f(Yτ )dx.

Now we approximate the increments of both of the integrals by∫ t

s
µ(Yτ , τ)dτ ≈µ(Ys, s)(t− s),∫ t

s
f(Yτ )dx ≈f(Ys)x1

s,t + f(Ys)
′x2

s,t,

for small |t− s|. This results in Algorithm 3.

Algorithm 3 Milstein scheme for RDEs
Input: N ≥ 1, t > 0, ξ
Output: y
y ← ξ
∆t← t

N
for n← 0, ..., N − 1 do

u← n∆t
m← µ(y, u)
s← f(y)
∆x1 ← x1

u+∆t − x1
u

∆x2 ← x2
u+∆t − x2

u − x1
u ⊗∆x1

z ← DY f(y)s
y ← y +m∆t+ s∆x1 + z∆x2

end for

Last but not least, we can again consider the order of convergence; the main idea of this proof
is based on [FV10, Theorem 10.30].

Lemma 6.3:
Let Y be the solution to Equation (15) and let Y Mil;D be the Milstein approximation from Algo-
rithm 3 based on the partition D = {0 = t0 < t1 < ... < tN = T} of [0, T ]. Let µ be 1

p -Hölder in
t and uniformly Lipschitz in Y . Then we have

∥∥∥Y· − Y Mil;D
·

∥∥∥
∞

= O

(
sup

n=0,...,N−1
ω

3
p
−1

(tn, tn+1)

)
.

In this proof, we again take a controlling function ω with

ω(s, t) ≥ Varpp,[s,t](x) + |t− s| ,

similar to the proof of existence and uniqueness of the solution (Theorem 3.6).

Proof. First, we again consider the error of the one-step increments: It holds∣∣∣∣∫ t

s
f(Yτ )dx− f(Ys)x1

s,t + f(Ys)
′x2

s,t

∣∣∣∣ ≤ Cω 3
p (s, t)
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by Theorem 2.29 and also∣∣∣∣∫ t

s
µ(Yτ , τ)dτ − µ(Ys, s)(t− s)

∣∣∣∣ ≤∫ t

s
|µ(Yτ , τ)− a(Ys, s)| dτ

≤
∫ t

s
|µ(Yτ , τ)− µ(Yτ , s)|+ |µ(Yτ , s)− µ(Ys, s)| dτ

≤
∫ t

s
Lµ−Lip(τ − s) + Lµ−Lip |Yτ − Ys| dτ

≤
‖µ‖ 1

p
−Höl;t

2
(t− s)1+

1
p

+

(
2
∥∥(Y, Y ′)

∥∥
D1

ω,x
ω

1
p (s, t) + ‖Y ‖∞

)
ω

1
p (s, t)(t− s)

≤Cµ,Y ω
1
p
+1

(s, t)

by Equation (10). Since p ≥ 2, we have∣∣∣∣∫ t

s
µ(Yτ , τ)dτ +

∫ t

s
f(Yτ )dx− µ(Ys, s)(t− s)− f(Ys)x1

s,t + f(Ys)
′x2

s,t

∣∣∣∣ ≤ Cω 3
p (s, t).

Now we extend this to the multi-step Milstein approximation. Let

D = {0 = t0 < t1 < ... < tN = t}

and define zk to be the value of the process that is the approximate solution in k steps from
0 = t0 to tk (calculated via the Milstein scheme) and the exact solution to Equation (15) in [tk, T ],
started at zktk . We then have the exact solution z0t = Yt and the approximation zNt = Y Mil;D

t .
Therefore ∣∣∣Yt − Y Mil;D

t

∣∣∣ = ∣∣z0t − zNt ∣∣ ≤ N−1∑
k=0

∣∣∣zkt − zk+1
t

∣∣∣ .
Since in the interval [tk+1, t], both zk and zk+1 are solutions to Equation (15) but started at
different values zk+1

tk+1
and zktk+1

, we can see by Theorem 3.11 that there is a C > 0, such that∥∥∥zk+1, z′k+1; zk, z′k
∥∥∥
x,x,ω,1

≤ C
∣∣∣zk+1

tk+1
− zktk+1

∣∣∣
and by Equation (12)∣∣∣zktk+1,t

− zk+1
tk+1,t

∣∣∣ ≤ (2ω 1
p (0, T )

∥∥∥zk+1, z′k+1; zk, z′k
∥∥∥
x,x,ω,1

+
∥∥∥z′k+1

tk+1
− z′ktk+1

∥∥∥)ω 1
p (tk, t).

We can then use∥∥∥z′k+1
tk+1
− z′ktk+1

∥∥∥ =
∥∥∥f(zktk+1

)− f(zk+1
tk

)
∥∥∥ ≤ ‖Df‖∞ ∣∣∣zk+1

tk+1
− zktk+1

∣∣∣
to see∣∣∣zkt − zk+1

t

∣∣∣ ≤ ∣∣∣zk+1
tk+1
− zktk+1

∣∣∣+ 2Cω
2
p (0, T )

∣∣∣zk+1
tk+1
− zktk+1

∣∣∣+ ω
1
p (0, T ) ‖Df‖∞

∣∣∣zk+1
tk+1
− zktk+1

∣∣∣
≤C ′

∣∣∣zk+1
tk+1
− zktk+1

∣∣∣ .
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As zk+1
tk

= zktk by definition, we can use the calculations from above to show∣∣∣zk+1
tk+1
− zktk+1

∣∣∣ = ∣∣∣zk+1
tk+1
− zk+1

tk
− zktk+1

+ zktk

∣∣∣
=

∣∣∣∣ ∫ tk+1

tk

a(zk+1
τ , τ)dτ +

∫ tk+1

tk

b(zk+1
τ )dx

− a(zk+1
tk

, tk)(tk+1 − tk)− b(zk+1
tk

)x1
tk,tk+1

+ b(zk+1
tk

)′x2
tk,tk+1

∣∣∣∣
≤Cω

3
p (tk, tk+1).

All in all, we have

∣∣∣Yt − Y Mil;D
t

∣∣∣ ≤N−1∑
k=0

∣∣∣zkt − zk+1
t

∣∣∣ ≤ C ′
N−1∑
k=0

∣∣∣zktk+1
− zk+1

tk+1

∣∣∣
≤C̃

N−1∑
k=0

ω
3
p (tk, tk+1) ≤ C̃ω(0, T ) sup

n=0,...,N−1
ω

3
p
−1

(tn, tn+1),

which shows the assertion.

This means, that the Milstein scheme converges path-wise to the correct solution up to floating
point errors, when ‖D‖ → 0.

Remark 6.4:
The solutions of RDEs can be defined in several different ways. Firstly, as controlled rough
paths, like we have done in Definition 2.30, as rough paths, like in [LCL07] or [Lej03], or as
the limit of exactly such a Milstein approximation. This last one is known in the literature as
Davie’s definition (from [Dav07]).
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7 Benchmarks
In order to test the algorithms, we conducted a benchmarking survey against the Differential
Equations julia library [RN17]. Here, we took advantage of the fact that our algorithms were
easily scalable to large batches, computing multiple samples of a process at a time.
The experiments were conducted on a machine with specs from Table 1 and were executed using
the CPU only. We would reckon, that one could get another sizable speed boost by using a
GPU for cuda calculations. This is possible with the code we have written.

OS Linux (5.13.0-35-generic x86_64)
CPU AMD Ryzen 5 3600 (6 Cores @ 3.6 GHz)
RAM 2x 8 GB DDR4 RAM @ 4200 MHz
Python version 3.9.7
PyTorch version 1.10.2+cu102

Table 1: Specs of the benchmarking machine.

The benchmark was to approximate the solution of a stochastic differential equation, where the
exact solution is known, in order to plot the runtime against the strong error

ES = E
[∣∣∣ŶT − YT ∣∣∣] ,

where Y is the correct solution and Ŷ is the approximate solution. This was done for multiple
RDEs. In the resulting work-precision-diagrams, our method is called RDE Solver and the
number is the batch size of the experiment, while all other methods are a selection of methods
from [RN17] run with a batch size of 1.

7.1 Scalar Noise Problem

The first goal is to solve the SDE

dXt = αXtdt+ βXtdBt, X0 =
1

2
,

where Wt is standard Brownian motion. By the Itô formula, the correct solution is the geometric
Brownian motion

Xt = X0e

(
α−β2

2

)
t+βBt

.

The experiments were conducted with α = 1
10 and β = 1

20 .
We can see in Figure 1 that our method performs very well with large batch sizes. We found
that up to a batch size of 100000, there was basically no difference in computation speed when
increasing the batch size. The second-order terms give a huge precision boost of up to a factor
of 1000 compared to the Euler scheme (EM) (using the implementation from [RN17]).

7.2 Scalar Wave SDE

A more complex SDE we tested was

dXt = −α2 sin (Xt) cos
3 (Xt) dt+ α cos2 (Xt) dBt, X0 =

1

2
.

Let

h(x) := arctan (αx+ tan (X0)) .
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Work Precision Diagram
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SRIW2
EM
RKMil
SRIW1 Fixed
SOSRI2

Figure 1: Work precision diagram of different SDE solving methods for the scalar noise problem.

Let x = tan(y) for y ∈ R. Then

x2 =
sin2(y)

cos2(y)

⇒ x2 + 1 =
sin2(y) + cos2(y)

cos2(y)
=

1

cos2(y)

⇒ 1

1 + x2
=cos2(y) = cos2(arctan(x)).

Using this, we obtain

∂h

∂x
(x) = α

1

1 + (αx+ tan(X0))
2 = α cos2(arctan(αx+ tan(X0))) = α cos2(h(x))

and

∂2h

∂x2
(x) = −2α2 sin(h(x)) cos3(h(x)).

Therefore, by the Itô formula, the correct solution is

Xt = h(Bt) = arctan (αBt + tan (X0)) .

The experiment was again conducted using a value of α = 1
10 .

In Figure 2, we see that for the scalar wave problem some of the adaptive algorithms approach
lower errors than our RDE method, but using large batch sizes our method still is way faster
than all the others. For this SDE, there is no real difference in error between the RDE method
and the standard Euler scheme (EM), but using parallelization, our method can still be faster
than the julia implementation of the Euler scheme.
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Figure 2: Work precision diagram of different SDE solving methods for the scalar wave problem.

7.3 Optimal Asset Allocation

Consider the Black-Scholes like model of a financial market made up of one stock S1
t with

dS1
t = µS1

t dt+ σS1
t dBt,

where Bt is standard Brownian motion and µ = r + ξσ, with ξ being the market price of risk,
and a savings account S0

t with constant interest rate r

dS0
t = S0

t rdt.

Let W0 be the initial wealth and π be a constant rate of additional investment. Let pt be the
percentage of wealth invested in the stock at time t. Then we can model the wealth process Wt

to be

dWt =
ptWt

S1
t

dS1
t + (1− pt)Wtrdt+ πdt

=µptWtdt+ ptσWtdBt + (1− pt)Wtrdt+ πdt

= [(r + ptξσ)Wt + π] dt+ ptσWtdBt.

Now, one may notice that this does not strictly fall into our problem setup. The drift part is
fine, as we have

‖(r + ptξσ) ζ + π, (r + p̃tξσ) ζ + π‖∞;T,M = sup
t∈[0,T ]
‖ζ‖≤M

‖(r + ptξσ) ζ + π − (r + p̃tξσ) ζ − π‖

≤ sup
t∈[0,T ]

‖r + ptξσ − r − p̃tξσ‖M

≤ξσM ‖p− p̃‖∞
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for different asset allocation policies p and p̃. This means that we can control the error in the
RDE solution, that comes from the drift term. The error in the volatility term (ptσWtdBt) can
be controlled using an analog to Theorem 3.11, that incorporates the error that comes from
using pt instead of p̃t. Using

f(ξ, t) :=ptσξ,

f̃(ξ, t) :=p̃tσξ

gives ∣∣∣f(ξ, t)− f̃(ξ̃, t)∣∣∣ = ∣∣∣ptσξ − p̃tσξ̃∣∣∣ ≤ σ ‖p− p̃‖∞ |ξ|︸︷︷︸
≤M

+σ ‖p̃‖∞
∣∣∣ξ − ξ̃∣∣∣

and ∥∥∥f(ξ, t)′ − f̃(ξ̃, t)′∥∥∥ =
∥∥∥Dξf(ξ, t)f(ξ, t)−Dξ f̃(ξ̃, t)f(ξ̃, t)

∥∥∥ =
∥∥∥p2tσ2ξ − p̃2tσ2ξ̃∥∥∥

≤
∥∥∥p2tσ2ξ − p2tσ2ξ̃∥∥∥+ ∥∥∥p2tσ2ξ̃ − p̃2tσ2ξ̃∥∥∥
≤‖pt‖2∞ σ2

∣∣∣ξ − ξ̃∣∣∣+ σ2
∣∣∣ξ̃∣∣∣︸︷︷︸
≤M

∥∥p2 − p̃2∥∥∞
≤‖p‖2∞ σ2

∣∣∣ξ − ξ̃∣∣∣+ σ2M ‖p− p̃‖∞ (‖p‖∞ + ‖p̃‖∞),

which incorporates the error in the volatility term into the estimate of Theorem 3.11, giving us
the additional term ‖p· − p̃·‖∞. This shows that the optimal expected loss for p ∈ C(ΛT ,R) can
be approximated by p̃ ∈ Tsig. To finally incorporate the condition pt ∈ [0, 1], we can simply set
pt = s(ct), where s is the sigmoid function

s(z) :=
1

1 + e−z

and c ∈ C(ΛT ,R), or c ∈ Tsig, respectively. Then

‖p− p̃‖∞ = ‖s ◦ c− s ◦ c̃‖∞ ≤ ‖c− c̃‖∞

together with

{p ∈ C(ΛT ,R)|pt ∈ [0, 1] for all t ∈ [0, T ]} = {s ◦ c|c ∈ C(ΛT ,R)}

gives the result we want.
We want to maximize the expected returns at some time T > 0, while at the same time mini-
mizing the volatility of the returns. For this, we introduce a Lagrange multiplier λ to solve the
optimization problem

p∗ = argmaxp
(
E[W p

T ]− λVar[W
p
T ]
)
,

where W p
T is the wealth process with asset allocation policy p at time T and the maximum goes

over all admissible (continuous and adapted) policies.
For Itô and Stratonovich SDEs involving Brownian motion, we can also choose a different ap-
proach of approximating Θ ∈ T = C(ΛT ,R). In this case, we make use of the Markov property
of Brownian motion, i.e.

σ(Bu|u ≤ s) ⊥⊥
Bs

Bt

for all s ≤ t. That is why we can simply fall back to C([0, T ]× R,R) for functions of time and
the current value instead of functions of the whole path up to the current time. Since neural
networks of large enough depth and width can approximate any continuous function arbitrarily
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r σ ξ π W0 T λ
0.03 0.15 0.33 0.1 1 20 0.5

Table 2: Values of constants in experiment.

well (on compact domains) [KL20; Les+93], we model pt = p(t,Wt) to be a continuous function
of the time and wealth at that time, which we approximate using a neural network with two
hidden layers of size 50 by solving the differential equation as an RDE using Algorithm 3 and
then using backpropagation to update the policy p.
Figure 3 shows the learnt policy for the constant values from Table 2.
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Figure 3: Learnt p(Wt, t) for values from Table 2.
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8 Discussion
We would like to discuss a few possible extensions to our problem setup and its solution.

8.1 More General Drift Terms

It would be interesting to know if one can generalize the main result of this thesis (Theorem 5.6)
by allowing more general functions for the control. In a first step, one could allow Θ(x̂|[0,t])
with Θ Borel-measurable instead of continuous. In this case, it can be interesting to note the
following:
Looking at [Wis94, Theorem 1], one can find a sequence (Θn) ⊂ C(ΛT ,R) = T , such that

Θn
n→∞−−−→ Θ a.s.

as B(ΛT ) coincides with the topology induced by the map

ϕ : [0, T ]× Ω̂p
T 3 (t,x) 7→ x|[0,t] ∈ ΛT

by [Bay+22, Lemma A.1]. Looking at the proof of said theorem, we see that actually Θn ≡ Θ
on a set Kn with

λ⊗ P(Kc
n)

n→∞−−−→ 0,

where λ is the Lebesgue measure, by Lusin’s theorem [Coh13, Theorem 7.4.4]. This implies

‖Θ−Θn‖
L

p
p−2 (ΛT )

≤ 2 ‖Θ‖∞ (λ⊗ P(Kc
n))

p−2
p

n→∞−−−→ 0,

which would then allow us to control the error for bounded Θ and give the result.
The most general result of this type would be to show

inf
µt adapted

E [L(Y µ)] = inf
µt∈Tsig

E [L(Y µ)]

with the same problem setup as before. We would reckon that for this, one needs to have
additional knowledge on the structure of adapted functions and how to approximate those.

8.2 Drift & Gubinelli Derivative

As mentioned in Remark 3.7, in the problem setup we have chosen, the drift does not show
up as part of the Gubinelli derivative of the solution of an RDE. This would be different when
thinking about an RDE with drift simply as an RDE of the augmented path x̂. More accurately,
our solution to

dY = µ(t, Yt)dt+ f(Yt)dx

has Gubinelli derivative Y ′
t = f(Yt), while the solution to

dŶ = f̂(Ŷ )dx̂

with

f̂(Ŷt) :=

(
f(Yt)
µ(t, Yt)

)
has Ŷ ′ = f(Ŷ ). Then f̂(Ŷt)dx̂t = f(Yt)dxt + µ(t, Yt)dt and the solution path (Y ) is indeed the
same (aside from the extra dimension of Ŷ , that just is the time itself). This difference would
not be present if we choose D1

ω,x̂ to be the solution space for our RDE, which we could, and also
set

Y ′ =

(
f(Yt)
µ(t, Yt)

)
.
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In the RY
s,t term, this would be no problem and would work analog to the estimates we used in

Theorem 3.6. However, we would additionally need the estimate

|µ(t, Yt)− µ(s, Ys)| ≤ Cω
1
p (s, t) (16)

for the second term of ‖(Y, Y ′)‖D1
ω,x̂

. This would then allow us to simplify some parts of the
theory drastically, starting with the proof of Theorem 3.8. There, the dependence on |Ys| would
be omitted, not only allowing us to skip half of the proof, which is about finding a bound
for ‖Y ‖∞, but it would also show that the resulting constant is a linear combination of terms
independent of ω(0, T ) times ω(0, T )β for different β > 0. It would also allow us to omit the
demand for 1

p -Hölder continuity in Lemma 6.3 and just work with the same problem setup as
before.
We have omitted this extension as, in the general case of our problem, an estimate of the form
of Equation (16) does not hold.
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