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Modern AI is largely attention-based.

Introduction of Transformer 
models by Vaswani et al. [1]

BERT [2]

GPT-2 [3]

ViT [4]
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[1] Vaswani et al. "Attention Is All You Need" NeurIPS 2017
[2] Devlin et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"  NAACL-HLT 2019
[3] Radford et al. "Language Models are Unsupervised Multitask Learners" 2019
[4] Dosovitskiy et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" ICLR 2021



Quadratic complexity prevents us from 
utilizing very long inputs.
Long inputs allow for:

• More context information
• (Updated) World knowledge
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Quadratic complexity prevents us from 
utilizing very long inputs.
Long inputs allow for:

• More context information
• (Updated) World knowledge

• High-resolution images
• More localized information

• Multiple modalities
• Concatenation of information
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TaylorShift is attention using the Taylor series 
of the exponential.

Attention Direct-TaylorShift

Activation
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TaylorShift is attention using the Taylor series 
of the exponential.

Attention Direct-TaylorShift

Activation

Interaction 
Function

Attention 
Calculation

Direct-TaylorShift
Complexity
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We can reorder calculations for efficient 
calculation.

1. Matrix multiplication (QK)
2. Activation function
3. Normalization
4. Matrix multiplication (KV)
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1. Matrix multiplication (QK)
2. Activation function
3. Normalization
4. Matrix multiplication (KV)

We can reorder calculations for efficient 
calculation.

Efficient-TaylorShift
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1. Matrix multiplication (QK)
2. Activation function
3. Normalization
4. Matrix multiplication (KV)

We can reorder calculations for efficient 
calculation.

1. Activation function
2. Matrix multiplication (KV)
3. Matrix multiplication (QK)
4. NormalizationEfficient-TaylorShift
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We counteract numerical instabilities by 
introducing multiple normalizations.
Normalization at the end
⇒ large intermediate results
⇒ numerical instability
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2.  
3.                           , adjust factors 
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We counteract numerical instabilities by 
introducing multiple normalizations.
Normalization at the end
⇒ large intermediate results
⇒ numerical instability

1. Normalize queries and keys, 
use attention temperature

2.  
3.                           , adjust factors 

accordingly
4.  
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TaylorShift calculates token-to-token 
interactions in linear time.

1. Softmax → Taylor-Softmax
2. Reorder operations for efficient calculation
3. Normalize intermediate results
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TaylorShift is efficient for long sequences, 
depending on    .

When is O(N d³) actually better than O(N² d)?

Speed

Proxy Metric # FLOPs
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Increasing the number of attention-heads 
increases TaylorShift's efficiency.

Reducing the dimension     makes TaylorShift more efficient.

Reduces the representational capacity of the model.
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Increasing the number of attention-heads 
increases TaylorShift's efficiency.

Reducing the dimension     makes TaylorShift more efficient.

Reduces the representational capacity of the model.

Change the number of attention-heads instead.

⇒ Increase efficiency without decreasing overall capacity by increasing the 
number of heads

TaylorShift – Tobias Christian Nauen – ICPR 2024 – Kolkata, India 8



TaylorShift is efficient for long sequences, as 
predicted.

Speed:
• Direct-TaylorShift 

outperforms attention
• Intersection point is 

larger than predicted
• Slow memory reads on 

current hardware
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TaylorShift is efficient for long sequences, as 
predicted.

Memory:
• Almost exactly like 

predicted theoretically

Speed:
• Direct-TaylorShift 

outperforms attention
• Intersection point is 

larger than predicted
• Slow memory reads on 

current hardware
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TaylorShift outperforms standard attention in 
4/5 tasks.

TaylorShift outperforms the 
other models, including the 
baseline Transformer 
encoder, in (at least) 4/5 
tasks.
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Increasing the number of heads speeds up 
TaylorShift and can increase accuracy.

Accuracy, throughput and VRAM usage of TaylorShift on the CIFAR 
Pixel task with increased number of attention heads with:

Increasing the number of 
heads:
• Reduces memory 

consumption
• Increases speed
• Sometimes increases 

accuracy
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TaylorShift: 
Shifting the Complexity of Self-Attention from 

Squared to Linear (and Back) using Taylor-Softmax 
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