

Deutsches Forschungszentrum
für Künstliche Intelligenz **German Research Center for Artificial Intelligence**

Rheinland-Pfälzische Technische Universität Kaiserslautern **RP** Landau

TaylorShift:

Shifting the Complexity of Self-Attention from Squared to Linear (and Back) using Taylor-Softmax

ICPR 2024 - Kolkata, India Tobias Christian Nauen

Sebastian Palacio Andreas Dengel

Modern AI is largely attention-based.

Quadratic complexity prevents us from utilizing very long inputs.

Long inputs allow for:

- More context information 旨
	- (Updated) World knowledge

al

RPTU

Quadratic complexity prevents us from utilizing very long inputs.

Long inputs allow for:

- More context information 旨
	- (Updated) World knowledge
	- High-resolution images
		- More localized information

Quadratic complexity prevents us from utilizing very long inputs.

Long inputs allow for:

- More context information 旨
	- (Updated) World knowledge
	- High-resolution images
		- More localized information
	- Multiple modalities
		- Concatenation of information

RPTU

Activation

Attention Direct-TaylorShift

Attention Direct-TaylorShift

$$
\text{T-SM}^{(k)}(x) = \frac{\sum_{n=0}^{k} \frac{x^n}{n!}}{\left|\left|\sum_{n=0}^{k} \frac{x^n}{n!}\right|\right|_1}
$$

Activation

 $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$

Interaction Function

 $\text{softmax}(x) = \frac{\exp(x)}{||\exp(x)||_1}$

Attention Direct-TaylorShift

$$
Y = \text{T-SM}^{(k)}(QK^\top)V
$$
Direct-TaylorShift

 $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ Activation

Interaction Function

$$
softmax(x) = \frac{\exp(x)}{||\exp(x)||_1}
$$

Attention **Calculation** $Y = \text{softmax}(QK^{\top})V$

 $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ Activation $\text{softmax}(x) = \frac{\exp(x)}{||\exp(x)||_1}$ Interaction Function

Attention **Calculation** $Y = \text{softmax}(QK^{\top})V$

Complexity $Q, K, V \in \mathbb{R}^{N \times d}$ $\mathcal{O}(N^2d)$

Attention Direct-TaylorShift

 $Y = T\text{-SM}^{(k)}(QK^{\top})V$ Direct-TaylorShift $\mathcal{O}(N^2d)$

$$
\textrm{T-SM}(QK^\top) V \,\,=\,\,\, \ell_1 - \textrm{norm}\left[\sum_{n=0}^2 \frac{(QK^\top)^n}{n!}\right] V
$$

- 1. Matrix multiplication (QK)
- 2. Activation function
- 3. Normalization
- 4. Matrix multiplication (KV) $\mathcal{O}(N^2d)$

$$
\text{T-SM}(QK^\top)V \ = \ \ \ell_1 - \text{norm}\left[\sum_{n=0}^2 \frac{(QK^\top)^n}{n!}\right]V \ \ = \ \ \text{norm}\left[\sum_{n=0}^2 \frac{(QK^\top)^n}{n!}V \circ 1\right]
$$

- 1. Matrix multiplication (QK)
- 2. Activation function
- 3. Normalization
- 4. Matrix multiplication (KV) $\mathcal{O}(N^2d)$

$$
\text{T-SM}(QK^\top) V \; = \; \; \ell_1 - \text{norm}\Bigg[\sum_{n=0}^2 \frac{(QK^\top)^n}{n!} \Bigg] V \;\; = \;\; \text{norm}\Bigg[\sum_{n=0}^2 \frac{(QK^\top)^n}{n!} V \circ 1\Bigg]
$$

= $\mathrm{norm}\Bigg[\frac{1}{2} (QK^\top)^2 (V \circ 1) + QK^\top (V \circ 1) + \sum_{\text{cols}} (V \circ 1) \Bigg]$

- 1. Matrix multiplication (QK)
- 2. Activation function
- 3. Normalization
- 4. Matrix multiplication (KV) $\mathcal{O}(N^2d)$

TaylorShift – Tobias Christian Nauen – ICPR 2024 – Kolkata, India 4

$$
\begin{aligned}\n\text{C-SM}(QK^{\top})V &= \ell_1 - \text{norm}\left[\sum_{n=0}^2 \frac{(QK^{\top})^n}{n!} \right] V &= \text{norm}\left[\sum_{n=0}^2 \frac{(QK^{\top})^n}{n!} V \circ 1\right] \\
&= \text{norm}\left[\frac{1}{2} \left(QK^{\top}\right)^2 (V \circ 1) + QK^{\top} (V \circ 1) + \sum_{\text{cols}} (V \circ 1)\right] \\
&= \text{norm}\left[\frac{1}{2} Q^{\boxtimes 2} (K^{\boxtimes 2})^{\top} (V \circ 1) + QK(V \circ 1) + \sum_{\text{cols}} (V \circ 1)\right] \\
&\quad \text{Efficient-TaylorShift}\n\end{aligned}
$$

- 1. Matrix multiplication (QK) 2. Activation function
-
- 3. Normalization
- 4. Matrix multiplication (KV) $\mathcal{O}(N^2d)$

$$
= \operatorname{norm}\left[\frac{1}{2}Q^{\boxtimes 2}(K^{\boxtimes 2})^{\top}(V \circ 1) + QK(V \circ 1) + \sum_{\text{cols}}(V \circ 1)\right]
$$

Efficient-TaylorShift

 $\mathcal{O}(Nd^3)$

RPTU

1. Matrix multiplication (QK)

4. Matrix multiplication (KV) $\mathcal{O}(N^2d)$

2. Activation function

1. Activation function

4. Normalization

Matrix multiplication (KV) **'**

3. Matrix multiplication (QK)

3. Normalization

We counteract numerical instabilities by introducing multiple normalizations.

Normalization at the end

⇒ large intermediate results

⇒ numerical instability

⇒ large intermediate results \Rightarrow numerical instability use attention temperature

We counteract numerical instabilities by introducing multiple normalizations.

Normalization at the end

Si:

1. Normalize queries and keys,

$\frac{1}{\sqrt{N}} \frac{4d+1}{4d}$ $\frac{d+2}{2d}$ $\frac{N+1}{N} \frac{1}{\sqrt{d}}$ $rac{1}{d}$ Size

Expr. $(K^{\boxtimes 2})^{\top}V = A_{\text{mod}} (QK^T)^2V QK^{\top}V$

We counteract numerical instabilities by introducing multiple normalizations.

Normalization at the end ⇒ large intermediate results \Rightarrow numerical instability

1. Normalize queries and keys, use attention temperature 2. $(V \circ 1) \leftarrow \frac{1}{N} (V \circ 1)$

 Y_{denom}

 \overline{Y}

 $\frac{d}{N}$

3. $Q, K \leftarrow \sqrt[4]{d}Q, \sqrt[4]{d}K$, adjust factors accordingly

We counteract numerical instabilities by introducing multiple normalizations.

Normalization at the end ⇒ large intermediate results \Rightarrow numerical instability

1. Normalize queries and keys, use attention temperature

$$
2. \quad (V \circ 1) \leftarrow \frac{1}{N} (V \circ 1)
$$

$$
\frac{\text{Expr.}}{\text{Size}} \quad \frac{(K^{\boxtimes 2})^\top V = A_{\text{mod}} \quad (QK^T)^2 V}{N} \quad \frac{QK^\top V}{1} \quad \frac{\sqrt{d}}{\sqrt{N}} + \frac{1}{4\sqrt{Nd}} \quad \frac{d+2}{2d} \quad \sqrt{\frac{d}{N}}
$$

⇒ numerical instability accordingly

2. $(V \circ 1) \leftarrow \frac{1}{N} (V \circ 1)$ 3. $Q, K \leftarrow \sqrt[4]{d}Q, \sqrt[4]{d}K$, adjust factors

use attention temperature

$$
\frac{\text{Expr.}}{\text{Size}} \quad \frac{(K^{\boxtimes 2})^{\top} V = A_{\text{mod}} \quad (QK^{T})^2 V}{1} \quad \frac{QK^{\top} V}{\sqrt{N}} \quad \frac{Y_{denom}}{2d} \quad \frac{Y}{2d}}{1}
$$

4. $Y \leftarrow \sqrt{\frac{N}{d}}Y$

Normalization at the end 1. Normalize queries and keys,

We counteract numerical instabilities by introducing multiple normalizations.

⇒ large intermediate results

TaylorShift calculates token-to-token interactions in linear time.

- 1. Softmax → Taylor-Softmax
- 2. Reorder operations for efficient calculation
- 3. Normalize intermediate results

When is $O(N d^3)$ actually better than $O(N^2 d)$?

Speed

Proxy Metric # FLOPs

Speed

Proxy Metric # FLOPs

Direct-TaylorShift

 $ops_{\text{dir}} = 4N^2d + 6N^2$

Efficient-TaylorShift

 $op_{\rm 1} = N(4d^3 + 10d^2 + 9d + 4)$

RPTU

Speed

Proxy Metric # FLOPs

Direct-TaylorShift

 $ops_{\text{dir}} = 4N^2d + 6N^2$

Efficient-TaylorShift

 $op_{\rm 1} = N(4d^3 + 10d^2 + 9d + 4)$

Intersection length

 $N_0 \leq d^2 + d + 1$

TaylorShift – Tobias Christian Nauen – ICPR 2024 – Kolkata, India 7

When is $O(N d^3)$ actually better than $O(N^2 d)$?

TaylorShift is efficient for long sequences, depending on d .

When is $O(N d^3)$ actually better than $O(N^2 d)$? **Speed Memory** Proxy Metric # FLOPs # Entries in intermediate results $ops_{\text{dir}} = 4N^2d + 6N^2$ $entr_{dir} = Nd + 2N^2$ Direct-TaylorShift $\text{entr}_{\text{eff}} = d^2(d+1) + 2Nd + N(d+1) + Nd^2$ $op_{\rm 1} = N(4d^3 + 10d^2 + 9d + 4)$ Efficient-TaylorShift $N_1 \leq \frac{1}{2}d^2 + 2d + \frac{1}{2}$ $N_0 \leq d^2 + d + 1$ Intersection length \overline{d} 8 **16** 32 64 128

TaylorShift – Tobias Christian Nauen – ICPR 2024 – Kolkata, India 7

73

47

273

159

1057

4161

574 2174

16513

8446

 N_0

 N_1

Increasing the number of attention-heads increases TaylorShift's efficiency.

 \blacktriangleright Reducing the dimension d makes TaylorShift more efficient.

Reduces the representational capacity of the model.

Increasing the number of attention-heads increases TaylorShift's efficiency.

- \blacktriangleright Reducing the dimension d makes TaylorShift more efficient.
	- Reduces the representational capacity of the model.
	- Change the number of attention-heads instead.

Increasing the number of attention-heads increases TaylorShift's efficiency.

- \blacktriangleright Reducing the dimension d makes TaylorShift more efficient.
	- Reduces the representational capacity of the model.
	- Change the number of attention-heads instead.

$$
d = \frac{d_{\text{embed}}}{h} \qquad h \times \text{ops}_{\text{eff}} \qquad h \times \text{entr}_{\text{eff}}
$$

$$
h \nearrow
$$

⇒ Increase efficiency without decreasing overall capacity by increasing the number of heads

RPTU

TaylorShift is efficient for long sequences, as predicted.

Speed:

- Direct-TaylorShift outperforms attention
- Intersection point is larger than predicted
- Slow memory reads on current hardware

 $d = 64$

 $1e-4$

TaylorShift is efficient for long sequences, as predicted.

 $1e-5$

 $d = 32$

 $d = 16$

 $1e-6$

Speed:

- Direct-TaylorShift outperforms attention
- Intersection point is larger than predicted
- Slow memory reads on current hardware

Memory:

• Almost exactly like predicted theoretically TE

RPTU

 $d = 128$

 $1e-3$

TaylorShift outperforms standard attention in

T **RPTU**

4/5 tasks.

TaylorShift outperforms the other models, including the baseline Transformer encoder, in (at least) 4/5 tasks.

Increasing the number of heads speeds up TaylorShift and can increase accuracy.

Increasing the number of heads:

- Reduces memory consumption
- Increases speed
- Sometimes increases accuracy

Accuracy, throughput and VRAM usage of TaylorShift on the CIFAR Pixel task with increased number of attention heads with:

$$
l_{\rm embed} = d \times h = 256 \qquad \qquad N = 1024
$$

TaylorShift:

Shifting the Complexity of Self-Attention from Squared to Linear (and Back) using Taylor-Softmax

