

Which Transformer to Favor: A Comparative Analysis of Efficiency in Vision Transformers

Tobias Nauen (RPTU, DFKI), Sebastian Palacio (ABB), Federico Raue (DFKI), Andreas Dengel (DFKI, RPTU)

There are many efficient transformer variants for computer vision.

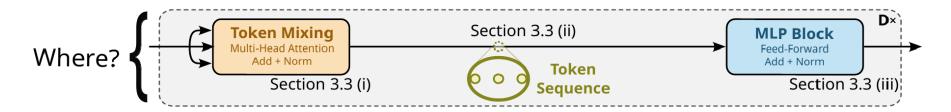
- Transformers are the state-of-theart models in computer vision.
- Their O(N²) computational complexity makes handling high resolution images expensive.

Routing Transformer HaloNet EfficientFormer Scatterbrain PatchConvNet Flash Attention FocalNet ViT Synthesizer Sinkhorn Transformer CaiT Linformer ToMe **Switch Transformer** GFNet DeiT FNet Nyströmformer Performer

There are many efficient transformer variants for computer vision.

- Transformers are the state-of-theart models in computer vision.
- Their O(N²) computational complexity makes handling high resolution images expensive.
- Many efficient transformers introduced in the literature.

Routing Transformer HaloNet EfficientFormer Scatterbrain PatchConvNet Flash Attention FocalNet Synthesizer Sinkhorn Transformer ToMe **Switch Transformer** GFNet DeiT FNet Nyströmformer Performer



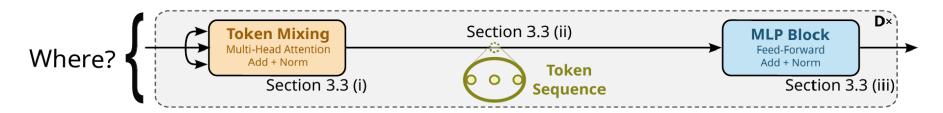
Token Mixing

- Low-Rank Attention
- Sparse Attention
- Fixed Attention
- Kernel Attention
- Hybrid Attention
- Fourier Attention
- Non-Attention Shuffling

Token Sequence

- Token Removal
- Token Merging
- Summary Tokens

MLP Block



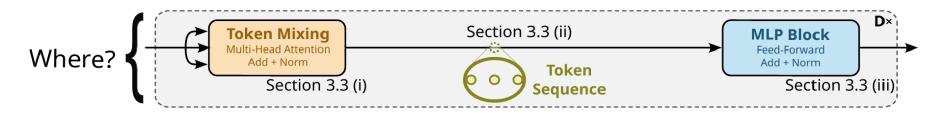
Token Mixing

- Low-Rank Attention
- Sparse Attention
- Fixed Attention
- Kernel Attention
- Hybrid Attention
- Fourier Attention
- Non-Attention Shuffling

Exploit the low-rank matrix QK^{\top} Sequence oval

Summary Tokens

MLP Block



Token Mixing

- Low-Rank Attention
- Sparse Attention
- Fixed Attention
- Kernel Attention
- Hybrid Attention
- Fourier Attention
- Non-Attention Shuffling

en Sequence

erging

Exploit that many

attention matrix are

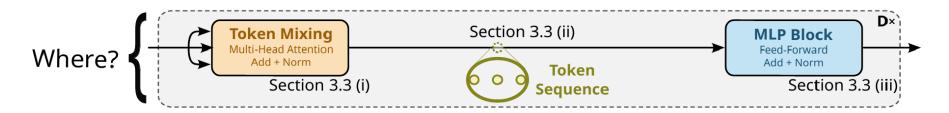
entries of the

≈0

erging

y Tokens

MLP Block



Token Mixing

pattern

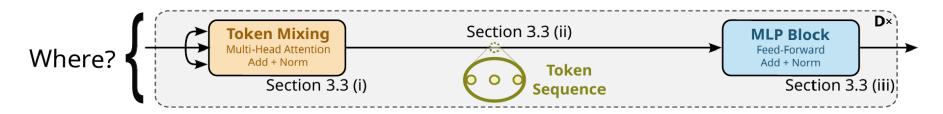
- Low-Rank Attention
- **Sparse Attention**
- Fixed Attention
- Kernel Attention
- **Hybrid Attention**
- **Fourier Attention**
- Non-Attention Shuffling

Token Sequence

Token Removal

Merging Set a fixed attention ary Tokens

MLP Block



Token Mixing

- Low-Rank Attention
- Sparse Attention
- Fixed Attention
- Kernel Attention
- Hybrid Attention
- Fourier Attention
- Non-Attention Shuffling

Token Sequence

- Token Removal
- Token Merging

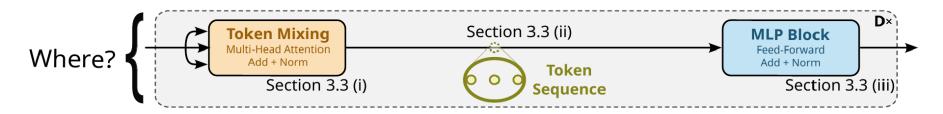
Shift the activation

ry Tokens

from QK^{\top} to Q and K

individually

MLP Block



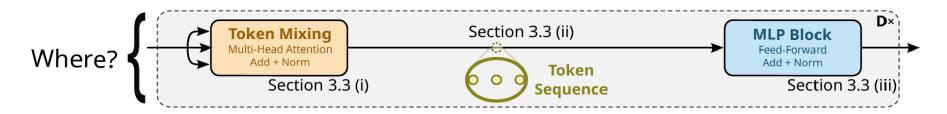
Token Mixing

- Low-Rank Attention
- Sparse Attention
- Fixed Attention
- Kernel Attention
- Hybrid Attention
- Fourier Attention
- Use convolutions in
- the attention
- calculation
- Non-Attention Shuffling

Token Sequence

- Token Removal
- Token Merging
- Summary Tokens

MLP Block



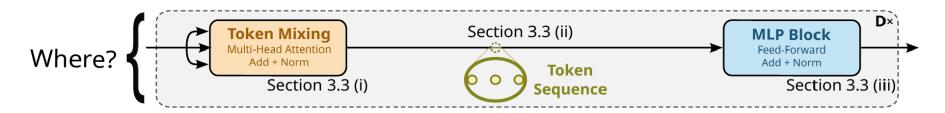
Token Mixing

- Low-Rank Attention
- Sparse Attention
- Fixed Attention
- Kernel Attention
- Hybrid Attention
- Fourier Attention Utilize the FFT
- Non-Attention Shuffling

Token Sequence

- Token Removal
- Token Merging
- Summary Tokens

MLP Block



Token Mixing

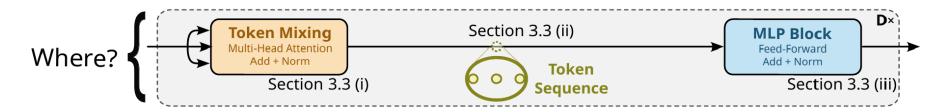
- Low-Rank Attention
- Sparse Attention
- Fixed Attention
- Kernel Attention
- Hybrid Attention
- Fourier Attention
- Non-Attention Shuffling

Token Sequence

- Token Removal
- Token Merging
- Summary Tokens

Use a different mechanism to mix the token-information

MLP Block

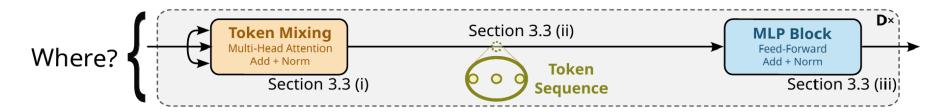


Summary Tokens

Token Mixing

- Low-Rank Attention
- Sparse Attention
- Fixed Attention
- Kernel Attention
- Hybrid Attention
- Fourier Attention
- Non-Attention Shuffling

Token Sequer Token Removal Token Merging MLP Block 1LPs



Token Mixing

- Low-Rank Attention
- Sparse Attention
- Fixed Attention
- Kernel Attention
- Hybrid Attention
- Fourier Attention
- Non-Attention Shuffling

Token Sequence

Token Removal Merge redundant

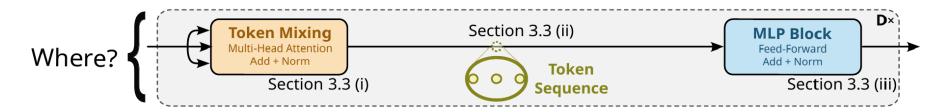
tokens

Token Merging →

Summary Tokens

MLP Block

MLPs



Token Mixing

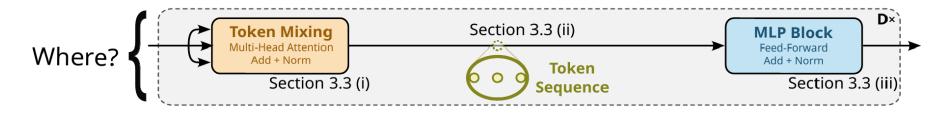
- Low-Rank Attention
- Sparse Attention
- Fixed Attention
- Kernel Attention
- Hybrid Attention
- Fourier Attention
- Non-Attention Shuffling

Token Sequence

- Token Removal
- Token Merging
- Summary Tokens ⇒

MLP Block

- More MLPs
- Summarize sets of
- tokens into fewer new
- tokens

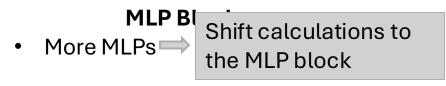


Token Mixing

- Low-Rank Attention
- Sparse Attention
- Fixed Attention
- Kernel Attention
- Hybrid Attention
- Fourier Attention
- Non-Attention Shuffling

Token Sequence

- Token Removal
- Token Merging
- Summary Tokens



How can we find the best efficient transformer?

- ?
- Which modifications and overall strategies are the most efficient?
- Are these modifications worth considering over the baseline ViT?
- What other dimensions influence efficiency?

How can we find the best efficient transformer?

- ?
- Which modifications and overall strategies are the most efficient?
- Are these modifications worth considering over the baseline ViT?
- What other dimensions influence efficiency?

Not comparable, due to different training and evaluation conditions

How can we find the best efficient transformer?

- Which modifications and overall strategies are the most efficient?
- Are these modifications worth considering over the baseline ViT?
- What other dimensions influence efficiency?

Not comparable, due to different training and evaluation conditions

- 1. Train models from scratch
- 2. Analyze using the framework of the Pareto front

For comparability, we train every model from scratch.

- H
- Based on DeiT III [1], an update to the popular pipeline from DeiT [2]
- Contains only standard CV elements
- 1

PMLR 2021.

Pretrain

- ImageNet-21k
- 90 epochs
- Learning rate 0.003 with cosine decay

Finetune

- ImageNet-1k
- 50 epochs
- Learning rate 0.0003 with cosine decay

Model	Original		Ours
	DeiT	Accuracy	Accuracy
ViT-S (DeiT)	√	79.8	82.54
ViT-S (DeiT III)		82.6	82.54
XCiT-S	\checkmark	82.0	83.65
Swin-S	\checkmark	83.0	84.87
SwinV2-Ti		81.7	83.09
Wave-ViT-S		82.7	83.61
Poly-SA-ViT-S		71.48	78.34
SLAB-S	\checkmark	80.0	78.70
EfficientFormer-V2-S0		75.7 $^{\scriptscriptstyle D}$	71.53
CvT-13		83.3 ↑	82.35
CoaT-Ti	\checkmark	78.37	78.42
EfficientViT-B2		82.7 ↑	81.52
NextViT-S		82.5	83.92
ResT-S	\checkmark	79.6	79.92
FocalNet-S		83.4	84.91
SwiftFormer-S		$m{78.5}^D$	76.41
FastViT-S12	\checkmark	79.8 ↑	78.77
EfficientMod-S	\checkmark	81.0	80.21
GFNet-S		80.0	81.33
EViT	\checkmark	79.4	82.29
DynamicViT-S		83.0^{D}	81.09
EViT Fuse	\checkmark	79.5	81.96
ToMe-ViT-S	\checkmark	79.42	82.11
TokenLearner-ViT-8		77.87↓	80.66
STViT-Swin-Ti	\checkmark	80.8	82.22
CaiT-S24	\checkmark	82.7	84.91

For comparability, we train every model from scratch.

- Based on DeiT III [1], an update to the popular pipeline from DeiT [2]
- Contains only standard CV elements

Pretrain

- ImageNet-21k
- 90 epochs
- Learning rate 0.003 with cosine decay

Finetune

- ImageNet-1k
- 50 epochs
- Learning rate 0.0003 with cosine decay

PMLR 2021.

- 13 out of 26 models are based on DeiT
- + 0.85% on average
- Up to +6.86% for Poly-SA

Model	Original		Ours
	DeiT	Accuracy	Accuracy
ViT-S (DeiT)	√	79.8	82.54
ViT-S (DeiT III)		82.6	82.54
XCiT-S	\checkmark	82.0	83.65
Swin-S	\checkmark	83.0	84.87
SwinV2-Ti		81.7	83.09
Wave-ViT-S		82.7	83.61
Poly-SA-ViT-S		71.48	78.34
SLAB-S	\checkmark	80.0	78.70
EfficientFormer-V2-S0		75.7 $^{\scriptscriptstyle D}$	71.53
CvT-13		83.3 ↑	82.35
CoaT-Ti	\checkmark	78.37	78.42
EfficientViT-B2		82.7 ↑	81.52
NextViT-S		82.5	83.92
ResT-S	\checkmark	79.6	79.92
FocalNet-S		83.4	84.91
SwiftFormer-S		78.5^D	76.41
FastViT-S12	\checkmark	79.8 ↑	78.77
EfficientMod-S	\checkmark	81.0	80.21
GFNet-S		80.0	81.33
EViT	\checkmark	79.4	82.29
DynamicViT-S		83.0^D	81.09
EViT Fuse	\checkmark	79.5	81.96
ToMe-ViT-S	\checkmark	79.42	82.11
TokenLearner-ViT-8		77.87↓	80.66
STViT-Swin-Ti	\checkmark	80.8	82.22
CaiT-S24	\checkmark	82.7	84.91

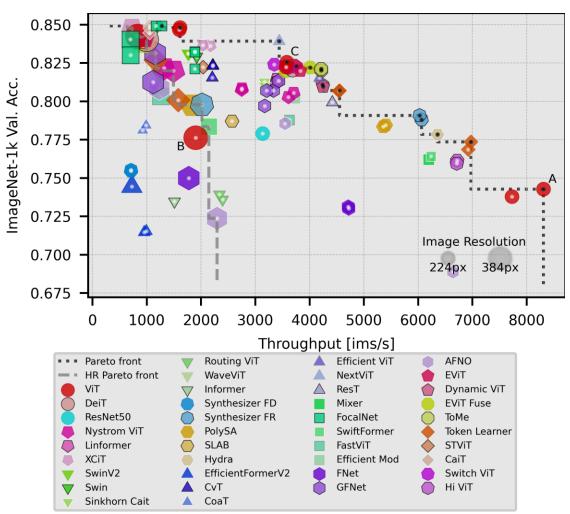
^[2] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jégou "Training data-efficient image transformers & distillation through attention".

dfki al RPTU

The baseline ViT model is still Pareto optimal in terms of speed.

Q

- 1. ViT is still Pareto-optimal
- 2. Scaling up the model size is more efficient than scaling up the image resolution
 - Short sequences for image classification
- 3. Sequence reduction is a way to speed up without losing too much accuracy

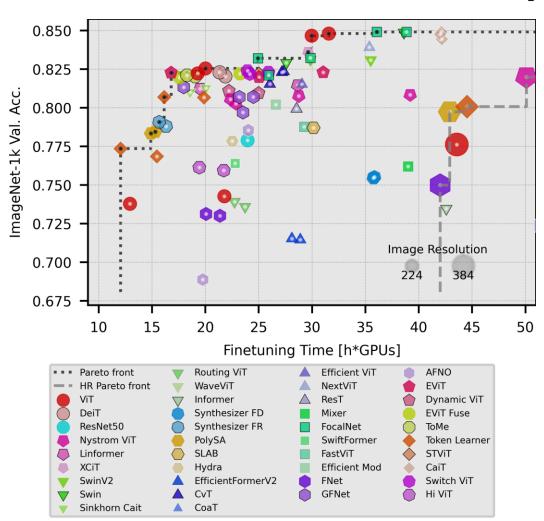


dtki al

The baseline ViT model is still Pareto optimal

in terms of speed.

- 1. ViT is still Pareto-optimal
- 2. Scaling up the model size is more efficient than scaling up the image resolution
 - Short sequences for image classification
- 3. Sequence reduction is a way to speed up without losing too much accuracy

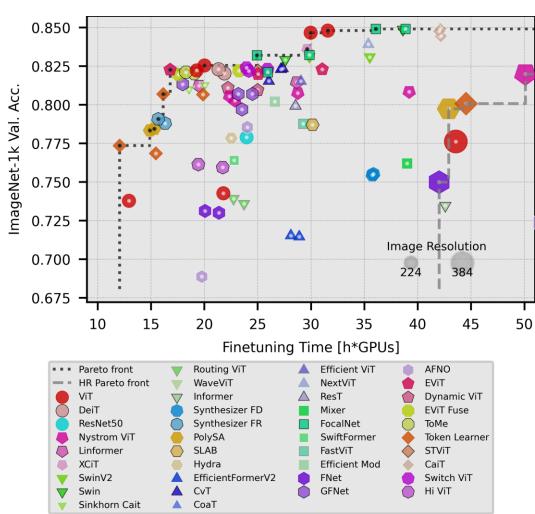


The baseline ViT model is still Pareto optimal in terms of speed.

Q

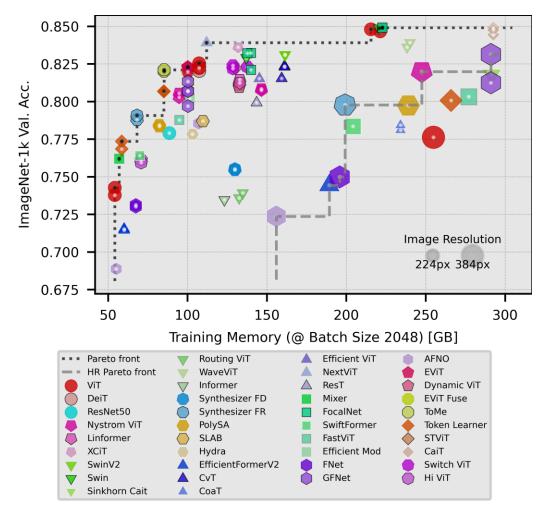
- 1. ViT is still Pareto-optimal
- 2. Scaling up the model size is more efficient than scaling up the image resolution
 - Short sequences for image classification
- 3. Sequence reduction is a way to speed up without losing too much accuracy

- Pareto front replicates on other datasets with a spearman correlation of >0.71
- And on other devices with a spearman correlation of >0.75



Convolution-based models are very inference-memory efficient.

Training Memory:
Very similar to speed



Convolution-based models are very inference-memory efficient.

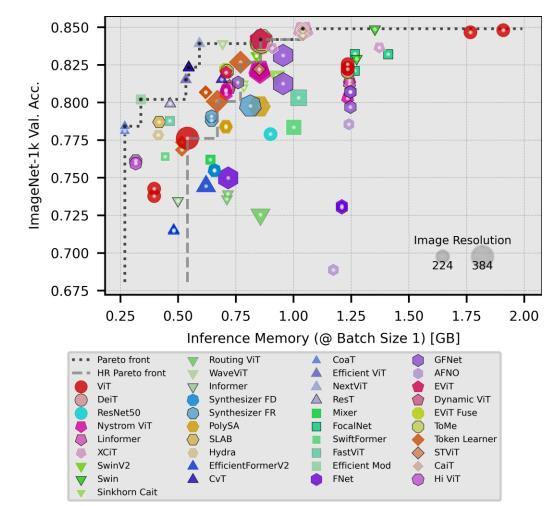
Training Memory:

Very similar to speed

Inference Memory:

Different from the other metrics

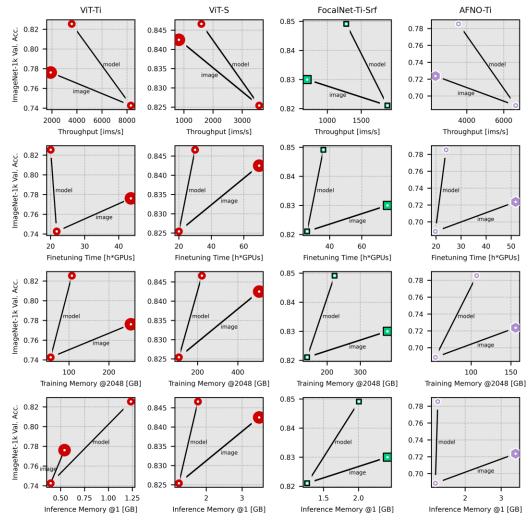
- 1. ViT is not Pareto optimal
- 2. Models incorporating convolutions excel in this metric
- 3. EViT @ 384 is the only Pareto optimal model using high-resolution images



Use larger models, not larger images.

RPTU

- Using high resolution images (384 x 384 px) is not Pareto optimal
- Tradeoff of scaling up the model size is better than for scaling up the image resolution



dfki

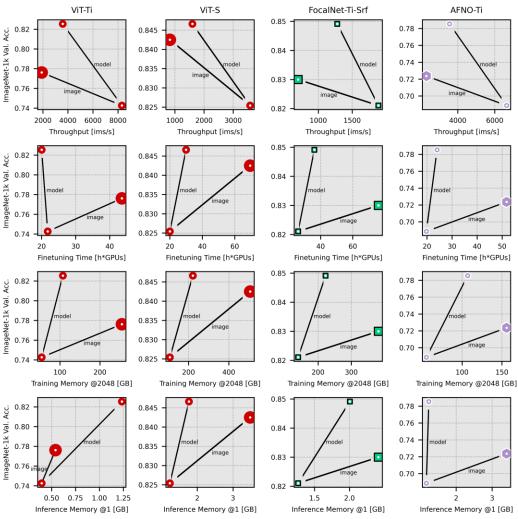
Use larger models, not larger images.

RPTU

- Using high resolution images (384 x 384 px) is not Pareto optimal
- Tradeoff of scaling up the model size is better than for scaling up the image resolution

 Using a larger model with 224px images is 2 to 3 times faster than a smaller model with 384px images

Also uses 2 to 3 times less training memory



Use larger models, not larger images.

RPTU

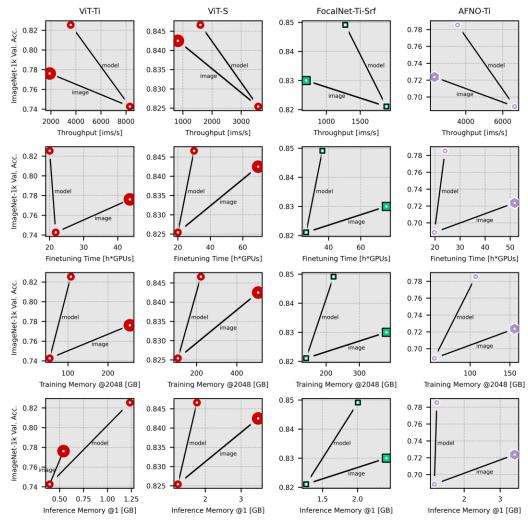
- Using high resolution images (384 x 384 px) is not Pareto optimal
- Tradeoff of scaling up the model size is better than for scaling up the image resolution

 Using a larger model with 224px images is 2 to 3 times faster than a smaller model with 384px images

Also uses 2 to 3 times less training memory

Interpretation:

In classification, the goal is to synthesize the information down to 1-d. Therefore, fine-grained information is not needed.



dfki al RPTU

Thanks & Goodbye

WTF Benchmark - Tobias Nauen - WACV 2025

Questions?
Feel free to reach out!

Tobias Nauen

tobias_christian.nauen@dfki.de

